谢邀。
p-adic域上可以考虑跟实数域上类似的数的几何和丢番图问题。很多经典丢番图逼近问题,比如Littlewood猜想,都有p-adic的类比版本。Anish Ghosh和他的学生们最近做了很多这方面的工作。我想说的是一个更神奇的现象:通过研究p-adic(或者S-adic)域上的数的几何(利用S-adic版本的Minkowski定理),可以得到实数域上的丢番图逼近问题的一些很漂亮的结果。比如最近Damien Roy的文章:
他通过考虑一个特殊的S-adic凸体上的数的几何,得到了形如 (其中 是满足一些性质的代数数)的向量的一个几乎optimal的丢番图性质(可以得到它们与有理向量的距离总是大于等于 , 为有理向量的分母)。我的理解是加上S-adic上的凸体相当于在取格点的时候增加了一些同余限制,使得要数的格点变少了。他的具体的证明细节我还没有读,感觉上这个想法可以应用到其他的经典丢番图问题中(当然不是简单的推广,Roy的证明用了指数函数的一个经典逼近公式,所以很依赖于指数函数的性质)。
PS:顺便提一句,我们有幸请了Damien Roy在我们的讨论班讲了这个优美的结果,有兴趣的同学可以在网上找到他报告的录像,喵呜~