变分法过于暴力了,我们简单一点,用初中几何+等周定理来做
如图,方便起见我们令两定点关于y轴对称且在单位圆上,然后先找到平分面积的圆弧。这里假定 ,对于 的情形易知最短的是直径,对于 由等周定理简单得是内切圆
蓝色弓形的面积为 ,因此红色部分的面积为
用 表示为
由 可以确定 的值,从而确定圆心O的位置。
接下来,我们画出两定点在圆O上对应的劣弧 ,其与单位圆上的劣弧围成一个固定区域(黄色部分),其面积为 ,具体值无关紧要。
现在,假定有一条曲线 过F和F'且平分圆面积,则 和 围成封闭曲线 ,其包围的面积为 等于圆O面积。根据等周定理,其周长必定不小于圆O的周长,从而 的总长必定不小于优弧 的长度;取到等号时 必然是圆,因此最小值点是唯一的。
综上所述,过两给定点且平分圆面积的最短曲线是圆弧(或直径),其圆心位置需要解一个超越方程才能得到。
估算一个上界。思路是每一轮都寻求一条最短线段,将当前包含天使的多边形,按面积等分成两个新的子多边形。再假设天使的运气足够好,每次都瞬移到等分效率较低的子多边形。
直观看出,取平行于正三角形一条边的线段来等分其面积,等分效率最高。令此线段长度 ,三角形边长 ,则:
这样,初始正三角形被分成一个新的小正三角形和一个等腰梯形,易见等腰梯形的等分效率远高于新的小正三角形,于是根据假设,天使将瞬移到新的小正三角形当中。如此循环,至于无穷,天使将被锁定在初始正三角形的一个顶点。计算魔鬼走过的耗时路程:
记魔鬼速度 ,则捉住天使的时间:
这个题目如此离散,不借助于数值离散优化不易得到全局最优解,建议大家来改进这个上界吧。
按照 @yyx 说的圆弧线等分正三角形以及后续的扇形,上界可以改进为: