百科问答小站 logo
百科问答小站 font logo



对于一个整环而言,①任意两个非零元的最大公因子存在,②它的不可约元一定是素元,是否等价? 第1页

  

user avatar   lu-li-61-16 网友的相关建议: 
      
  • 条件1 强于条件 2. (见B)
  • 对于诺特环来说是等价的. (见E)


A. [最大公因子整环] 整环 称为最大公因子整环, 如果任意两个非零元有最大公因子.

B. 如果 为最大公因子整环, 那么不可约元是素元.

[证明] 如果 不可约, . 首先,我们知道不能 且 ( 因为如果 且 那么 ,矛盾). 我们假定 非单位, 那么 , 因为 是极大的主理想,故 ,所以 .


C. [唯一析因整环区UFD] 整环 称为唯一析因整还, 如果:

  • (1) (可分解性) 每个非零非单位元 可以写成有限个不可约元的乘积 .
  • (2) (唯一分解性) 如果 , 那么 并且适当调整角标后可以使 与 相伴.

D. 在一般抽象代数书中都有UFD的判定:

  • [UFD的判定] 整环 为UFD, 当且仅当满足可分解性, 并且不可约元是素元.

E. 如果 是诺特的, 则肯定具有可分解性, 所以条件1 等价于条件 2.




  

相关话题

  怎么建立复数与实数的一一对应? 
  这个数学问题,大家可以指点一下吗? 
  有哪些定理在高维情况下与三维情况下培养出来的直觉不符? 
  在 UCLA 上陶哲轩的课是什么感受? 
  收敛的序列是否存在单调的子序列(不要求严格单调)? 
  如何看待国际数学联盟发表声明,取消在俄罗斯圣彼得堡线下举办国际数学家大会?其它国际组织会跟进吗? 
  请问泰勒公式的几何意义是什么? 
  怎么证明方程 x^4+4x^3-3x^2-x=0 有 4 个实根? 
  如何评价数学家张益唐? 
  我有一个数学猜想,你们能证明吗,下面有关于该问题的详细补充说明? 

前一个讨论
为什么三维欧氏空间中的紧致曲面必有正曲率的点?
下一个讨论
整函数f(z)满足lim(z→∞)Re(f(z))/z=0,则f是常数吗?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利