百科问答小站 logo
百科问答小站 font logo



对于一个整环而言,①任意两个非零元的最大公因子存在,②它的不可约元一定是素元,是否等价? 第1页

  

user avatar   lu-li-61-16 网友的相关建议: 
      
  • 条件1 强于条件 2. (见B)
  • 对于诺特环来说是等价的. (见E)


A. [最大公因子整环] 整环 称为最大公因子整环, 如果任意两个非零元有最大公因子.

B. 如果 为最大公因子整环, 那么不可约元是素元.

[证明] 如果 不可约, . 首先,我们知道不能 且 ( 因为如果 且 那么 ,矛盾). 我们假定 非单位, 那么 , 因为 是极大的主理想,故 ,所以 .


C. [唯一析因整环区UFD] 整环 称为唯一析因整还, 如果:

  • (1) (可分解性) 每个非零非单位元 可以写成有限个不可约元的乘积 .
  • (2) (唯一分解性) 如果 , 那么 并且适当调整角标后可以使 与 相伴.

D. 在一般抽象代数书中都有UFD的判定:

  • [UFD的判定] 整环 为UFD, 当且仅当满足可分解性, 并且不可约元是素元.

E. 如果 是诺特的, 则肯定具有可分解性, 所以条件1 等价于条件 2.




  

相关话题

  数学或者自然科学中有哪些理论技巧一经提出就大大化简了过去某些问题很困难繁琐的解答? 
  对任意无理数,都存在有理数列趋近于这个无理数,为什么,怎么找这个有理数列? 
  一道难题求助大佬? 
  是什么让你对数学或物理感兴趣的? 
  时间为什么用 12 进制? 
  数学的应用到底有多广泛? 
  如何理解出租车几何学? 
  虚数的现实、物理意义是什么? 
  北京国际数学研究中心教授谢俊逸和袁新意解决几何 Bogomolov 猜想难题,如何理解这一工作? 
  有没有证明某函数不存在初等表示的一般思路? 

前一个讨论
为什么三维欧氏空间中的紧致曲面必有正曲率的点?
下一个讨论
整函数f(z)满足lim(z→∞)Re(f(z))/z=0,则f是常数吗?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利