百科问答小站 logo
百科问答小站 font logo



由AB=BA=O可以得出什么结论? 第1页

  

user avatar   ko-ma-ri-0813 网友的相关建议: 
      

有一个概念叫作“垂直”,是指的 ,但是一般并不说两个任意的矩阵垂直,只有当这两个矩阵都是正定(或者自共轭)矩阵的时候才说它们垂直。自共轭矩阵总是可以对角化的,而两个矩阵可以交换,就意味着可以同时对角化,而它们的对角化的乘积是0,意味着同时对角化之后,如果某一个矩阵的对角线上某一个元素不是0,那么另一个矩阵的对应的位置一定是0. 也可以等价地说成是, ,任何一个向量都可以分解为 和 的元素之和。

任何一个矩阵都可以分解为半等距矩阵(或酉矩阵)与正定矩阵的积,并且在两个矩阵的核相等的条件下分解是唯一的。半等距矩阵给出了向量空间的某一个子空间与另一个子空间之间的同构,如果分别记 而 ,那么 当且仅当 .

两个半等距矩阵“垂直”直观上就是 的始空间与 的终空间垂直, 的终空间与 的始空间垂直。

矩阵的极分解在直观上是这样的:首先假定有如下的矩阵

这个矩阵把e1映射为2f1,把e2映射为πf2,把e3映射为f3,把e4映射为2f4

这个时候,如果把所有系数抹去,就得到了一个半等距矩阵:

另一方面,如果把箭头抹去,则得到了一个正定矩阵:

所以原矩阵等于有箭头没系数的半等距矩阵乘以有系数没箭头的正定矩阵。




  

相关话题

  如果高考允许以一百万人民币一分的价格无限量购买分数(收入归大学所有),那对社会会有怎样的影响? 
  在数学和物理中有哪些类似「Lagrangian」、「Laplacian」的词? 
  各位积佬们这个积分有什么好的思路吗? 
  中国普通民众的拓扑学知识是怎样的水平? 
  如何看待乌克兰数学家康斯坦丁·奥尔梅佐夫自杀? 
  为什么经济学专业要学拓扑学? 
  为什么数列可以用不动点法,到底表示什么意思啊? 
  国外的人数学真的那么差么? 
  如何理解命题「矩阵可对角化等价于其所有特征值的代数重数等于几何重数」? 
  如何证明:p3阶非Abel群的中心必同构于Zp,这里p为素数? 

前一个讨论
为什么弧度制的性质如此优良?
下一个讨论
「克莱因瓶」是什么,如何借助「克莱因瓶」来理解四维空间?





© 2025-04-02 - tinynew.org. All Rights Reserved.
© 2025-04-02 - tinynew.org. 保留所有权利