百科问答小站 logo
百科问答小站 font logo



最小二乘法的本质是什么? 第1页

  

user avatar   matongxue 网友的相关建议: 
      
最小平方法是十九世纪统计学的主题曲。
从许多方面来看, 它之于统计学就相当于十八世纪的微积分之于数学。

----史蒂芬·史蒂格勒的《The History of Statistics》

1 日用而不知

来看一个生活中的例子。比如说,有五把尺子:

用它们来分别测量一线段的长度,得到的数值分别为(颜色指不同的尺子):

之所以出现不同的值可能因为:

  • 不同厂家的尺子的生产精度不同
  • 尺子材质不同,热胀冷缩不一样
  • 测量的时候心情起伏不定
  • ......


总之就是有误差,这种情况下,一般取平均值来作为线段的长度:

日常中就是这么使用的。可是作为很事'er的数学爱好者,自然要想下:

  • 这样做有道理吗?
  • 用调和平均数行不行?
  • 用中位数行不行?
  • 用几何平均数行不行?


2 最小二乘法

换一种思路来思考刚才的问题。

首先,把测试得到的值画在笛卡尔坐标系中,分别记作 :

其次,把要猜测的线段长度的真实值用平行于横轴的直线来表示(因为是猜测的,所以用虚线来画),记作 :

每个点都向 做垂线,垂线的长度就是 ,也可以理解为测量值和真实值之间的误差:

因为误差是长度,还要取绝对值,计算起来麻烦,就干脆用平方来代表误差:

误差的平方和就是( 代表误差):

因为 是猜测的,所以可以不断变换:

自然,误差的平方和 在不断变化的。

法国数学家,阿德里安-马里·勒让德(1752-1833,这个头像有点抽象)提出让总的误差的平方最小的 就是真值,这是基于,如果误差是随机的,应该围绕真值上下波动(关于这点可以看下“如何理解无偏估计?”)。

勒让德的想法变成代数式就是:

这个猜想也蛮符合直觉的,来算一下。

这是一个二次函数,对其求导,导数为0的时候取得最小值:

进而:

正好是算术平均数。

原来算术平均数可以让误差最小啊,这下看来选用它显得讲道理了。

以下这种方法:

就是最小二乘法,所谓“二乘”就是平方的意思,台湾直接翻译为最小平方法。

3 推广

算术平均数只是最小二乘法的特例,适用范围比较狭窄。而最小二乘法用途就广泛。

比如温度与冰淇淋的销量:

看上去像是某种线性关系:

可以假设这种线性关系为:

通过最小二乘法的思想:

上图的 分别为:

总误差的平方为:

不同的 会导致不同的 ,根据多元微积分的知识,当:

这个时候 取最小值。

对于 而言,上述方程组为线性方程组,用之前的数据解出来:

也就是这根直线:

其实,还可以假设:

在这个假设下,可以根据最小二乘法,算出 ,得到下面这根红色的二次曲线:

同一组数据,选择不同的 ,通过最小二乘法可以得到不一样的拟合曲线(出处):

不同的数据,更可以选择不同的 ,通过最小二乘法可以得到不一样的拟合曲线:

也不能选择任意的函数,还是有一些讲究的,这里就不介绍了。

4 最小二乘法与正态分布

我们对勒让德的猜测,即最小二乘法,仍然抱有怀疑,万一这个猜测是错误的怎么办?

数学王子高斯(1777-1855)也像我们一样心存怀疑。

高斯换了一个思考框架,通过概率统计那一套来思考。

让我们回到最初测量线段长度的问题。高斯想,通过测量得到了这些值:

每次的测量值 都和线段长度的真值 之间存在一个误差:

这些误差最终会形成一个概率分布,只是现在不知道误差的概率分布是什么。假设概率密度函数为:

再假设一个联合概率,这样方便把所有的测量数据利用起来:

把 作为变量的时候,上面就是似然函数了(关于似然函数以及马上要讲到的极大似然估计,可以参考“如何理解极大似然估计法?”)。

的图像可能是这样的(随便画的):

根据极大似然估计的思想,联合概率最大的最应该出现(既然都出现了,而我又不是“天选之子”,那么自然不会是发生了小概率事件),也就是应该取到下面这点:

当下面这个式子成立时,取得最大值:

然后高斯想,最小二乘法给出的答案是:

如果最小二乘法是对的,那么 时应该取得最大值,即:

好,现在可以来解这个微分方程了。最终得到:

这是什么?这就是正态分布啊。

并且这还是一个充要条件:

也就是说,如果误差的分布是正态分布,那么最小二乘法得到的就是最有可能的值。

那么误差的分布是正态分布吗?

如果误差是由于随机的、无数的、独立的、多个因素造成的,比如之前提到的:

  • 不同厂家的尺子的生产精度不同
  • 尺子材质不同,热胀冷缩不一样
  • 测量的时候心情起伏不定
  • ......


那么根据中心极限定理(参考“为什么正态分布如此常见?”),误差的分布就应该是正态分布。

虽然勒让德提出了最小二乘法(高斯说他最早提出最小二乘法,只是没有发表),但是高斯的努力,才真正奠定了最小二乘法的重要地位。

文章最新版本在(有可能会有后续更新):如何理解最小二乘法?




  

相关话题

  想问问各位大手子这个定理怎么证明,题目在补充里? 
  如何形象地理解矩阵的相似与合同? 
  5×3還是3×5? 
  下列数字方块移动得到一定排列顺序的问题有解吗? 
  n维向量空间V中向量的维数是否为n维? 
  真的有什么式子能表示圆周率吗? 
  当游戏设计师需要具备哪些基本素养? 
  为什么世界上大多数地方的人习惯用逗号表示小数点,而C++却用圆点表示小数点,而不是按照大多数地方习惯? 
  如何把微信群/QQ群构造成一个阿贝尔群? 
  方程 x³+y³+z³=33 是否存在整数解? 

前一个讨论
如何看待中国选手杜宇生以 3.47 秒打破三阶魔方世界纪录?
下一个讨论
华裔乃至亚裔频频遭受不公,根源在于不会闹事吗?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利