百科问答小站 logo
百科问答小站 font logo



为什么矩阵行秩等于列秩? 第1页

  

user avatar   guokou-wang-75-52 网友的相关建议: 
      

不知道有没有人从线性空间及其对偶空间的角度来回答。

设 为基域, 为有限维线性空间之间的线性同态。取定 各自的一组基 ,并设 对应于这两组基的矩阵为 .

现在考虑对偶空间 取 的对偶基,则 对应于这两组基的矩阵为 的转置 .

注意到 的列秩等于 的行秩。所以“ 的行秩等于列秩”说的是 的像具有相同的维数。


看来我只是重复了 @王筝 的回答。


还有一个证明,虽然用到了行秩大于 列秩和列秩 行秩,但不失巧妙与简洁。此证明见于Gilber Strang 的 MIT 公开课 Matrix methods in data analysis, signal processing, and machine learning.

设 为 矩阵, 的列秩和行秩分别为 . 取 的列空间的一组基 , 令

, 则 为 矩阵,并且有 矩阵 满足 .

这样,我们证明了 的行空间是由 的各行线性生成的,于是有 . 取 的转置,则以上方法证明了 , 于是有 .




  

相关话题

  将斐波那契数列从左到右、从上往下地依次填入一个n*n的矩阵中,当n≥3时,行列式是否一定为0? 
  两块完全一样饼,如何平均分给三个人? 
  如何将一个不规则石块切割成体积相等的两部分? 
  有哪些有趣、脑洞大开的学术论文? 
  蝴蝶定理有多少种证法? 
  如何证明一下等式? 
  怎么看待数学界天才崇拜这种文化? 
  如何看待清华大学数学新领军计划和丘班综合测试? 
  请问这道题用麦克劳林该怎么做? 
  为什么做功可以和力向量与位移向量的特定内积得出? 

前一个讨论
过氧化钠有漂白性吗?
下一个讨论
不用反证法,不用三角函数,如何证明这道几何题?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利