百科问答小站 logo
百科问答小站 font logo



解方程的实质意义是什么? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

上式是方程组最一般的形式. 我先逐个回答题主所提及的具体问题,然后再笼统地回答一下所谓“解方程的实质意义”.

我们设 是上面方程组的任意一个解(分离公理),那么代入方程组,显然有(代入公理):

此时每个方程都化为了数式 ,而没有涉及任何变元,所以使用普通的四则运算去理解方程间的加法就可以了

上式我写成了较为一般的形式——方之间的线性组合,系数 可以在某个数域 任意选取. 我们发现,方程组(1)的解 仍然是形如(3)的方程

的解. 线性方程组的解的结构比较优美:一个特解加上齐次解的任意倍数,就张成了整个解空间.

2.

如果(1)无解,其充要条件:任取一组数 ,至少存在一个方程满足

但是其他方程等于几我们就管不着了,很有可能通过加加减减刚好得到(3)式,这也是可能的,例如

无解,但 有解: , ;

也有可能两个方程都没有解,但加起来又有解了:

但 解为 .

3.

解方程所涉及的逻辑,实际上就是分离公理代入公理,这个如果不懂请自行百度,或者查阅相关文献[1];增根等问题,实际上就是在去分母的环节中,方程两边同乘一个代数式,但不能排除代数式为零的可能,或者去分母时分母不能为零的条件被忽略……从代入公理的角度理解是十分清晰的:我们带入的不是一个不定元,而是一个个具体的数值,如果总是从这个角度出发,就会避免“引狼入室”或者“亡羊补牢”.

相信通过我上面的梳理,已经回答了大部分题主的问题.

4.

最后笼统地说一下解方程所谓“实质”.

方程(组)有一大特色,解方程一般来说并不容易,但是验证解很简单. 所以,解方程最一般的方法,是通过穷举法得到方程组的解

从几何的角度,当 满足一定的条件时(正则值原像定理),于是定义了一个子流形. 从微分方程的角度看,它的一个解(函数)是一条固定初值,随时间流动的积分流形.

并不是所有的方程都能解出来,我们能解出来的方程对于全体方程而言简直微不足道,我们会的代数技巧是几千年来数学家们努力的结果,他们给出了为数不多的简单类型的方程的通解. 尤其是代数方程,人们发现,只要能凑成如下结果,就立即可知方程的结果:

所以才衍生出一系列如移项、提公因式、配方……的技巧. 从抽象代数的角度讲,这是在探讨代数扩张、多项式的分裂域等问题,最终由数学家 Galois 给出完美的解答.

参考

  1. ^ 《陶哲轩实分析》第3章第1节



  

相关话题

  由 x²+x+1=0 得到 3=0 错在何处? 
  怎么证明方程 x^4+4x^3-3x^2-x=0 有 4 个实根? 
  如何看待清华大学将线性代数教材改为英文教材? 
  一个三阶行列式,所有的元素要么是 1,要么是 -1,则它的值可能是多少? 
  只有三维向量有向量积吗? 
  如何判断向量组是否线性相关? 
  如何理解矩阵的「秩」? 
  在线性代数中如何用几何表示非方阵矩阵相乘? 
  有什么答案为5201314的高阶行列式(四阶以上)? 
  伽罗瓦理论究竟讲了什么?为什么其中用到了群论的知识? 

前一个讨论
人类可探索的数学会不会因为证明长过人类脑容量而穷尽?
下一个讨论
选择公理有哪些反直觉的应用?





© 2025-01-18 - tinynew.org. All Rights Reserved.
© 2025-01-18 - tinynew.org. 保留所有权利