来答一下这个题。已经有两位说的不错了,他们分别说了不同的方面:
实际上,在实内积空间(一般地,在对称非退化双线性空间)中,对偶映射和伴随算子可以认为是一回事。更严谨地表述是, 的对偶映射 与 的伴随算子 差了一个 的典范同构 (定义为 )。命题表述如下:
设 是有限维线性空间, 是对称的、非退化的双线性形式, 是 的线性映射,是 的伴随算子。则有
(或者说在 的典范同构下, ,即对偶映射就是伴随算子)
这样就把两种看法统一起来了。(这也不难理解,毕竟都是转置嘛~)
关于这个命题及其证明,见
注意一下,一般来说 的同构依赖于基的选取,不是典范同构,但在实内积空间中(相当于引入了额外的结构), 的同构确实是典范的,就是借由之前说的
来自评论区 @王云峰 :实际上述双线性形式未必需要是对称的,非对称也是可以的,只要非退化就可以确定伴随,只需注意到典范同构 f 实际上有两个,分别对应双线性形式的两个槽位,f1(v)(w) = <v,w> = f2(w)(v),T 的伴随 S 定义为满足 <x,Ty> = <y,Sx>,则可证明 T* ⁰ f1 = f2 ⁰ S