百科问答小站 logo
百科问答小站 font logo



是否存在连续函数,使得每个数都被取到n次? 第1页

  

user avatar   svjt-170146 网友的相关建议: 
      

10.22

结论: 题主的猜想正确.

为奇数: 构造函数 , 其中 为取整函数和取小数函数.

满足题目条件, 图像如下 :

为偶数(存在 , ): 不存在这样的连续函数 .

设 为 的全部零点.

在以上 个区间上分别不变号. 若 在区间上恒为正, 则称这个区间的符号为正, 否则为负号.

根据抽屉原理, 中必定有 个同号的区间 , 不妨设符号皆为正.

设 在 上的最大值为 . 由介值定理, 对任意的 , 存在 使得 .

取 , 则以上 个区间中至少存在 个不同的 使得 .

中有一个符号为正, 否则 在 上有上界. 可知存在 使得 .

综上, 存在 个两两不同的 : 和 使得 , 而 , 矛盾.


10.24 知乎小透明首次突破百赞!

10.27 (200赞)

感谢各位支持!




  

相关话题

  这几个有关贝塞尔函数的拉普拉斯变换是怎么推导的? 
  这两个级数该怎么解答? 
  有哪些神奇的级数求和? 
  微分记号 dx 是否不够恰当? 
  怎么计算概率积分 ∫[0, +∞) (e^(-x²))dx? 
  这个数列问题困扰我一段时间,大佬有没有好的方法呢? 
  格林公式为什么不对称啊? 
  如何证明算术平均的极限? 
  一个函数经过傅立叶变换,再经过傅立叶逆变换得到的函数还是原函数吗? 
  用积分中值定理,中值的极限怎么证明? 

前一个讨论
如何证明这个与树有关的递推式?
下一个讨论
学习数学分析和高等数学的区别是什么?





© 2025-02-22 - tinynew.org. All Rights Reserved.
© 2025-02-22 - tinynew.org. 保留所有权利