百科问答小站 logo
百科问答小站 font logo



平面有界凸集上的点到其重心的最大距离是其直径的比例的上界是多少呢? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

下面计算的是顶点的重心,而不是凸集的重心。


考虑扇形类似物的集合。

设各点坐标:对于

重心坐标为 ,其中

离重心 最远的点是 ,则比例上界为




我再次尝试计算凸集的重心,并且考虑真正的扇形:

设各点坐标:对于

假设 充分小,则扇形半径为

重心坐标为 ,其中可以通过剖分为 个小三角形的重心,以面积为权重,做加权平均。对于每个三角形 或 ,其重心为:

于是对于整个扇形而言,重心为

于是离重心 最远的点是 ,则比例上界为

做了一点简单的计算,感觉上界似乎真的是 。




  

相关话题

  对于所有的无穷小,能否把它们趋于0的速度定义为一个数,使得趋于0速度较小的一定是较低阶的无穷小? 
  赋范空间和度量空间都可以定义极限,为什么要引入两个能定义极限的空间呢,区别是什么,各自有哪些应用范围? 
  如何证明下面的级数收敛? 
  作为一名非数学专业(电子工程,物理)的学生,怎么样让自己的水平达到介于数学专业以及非数学专业的水平? 
  这个极限结果怎么算出来的? 
  任意 ε>0,a≤b+ε 是否可推出 a≤b? 
  数学有什么意义?数学中的一切都是人类自己编造的吗? 
  如何证明下面的级数收敛? 
  学习大学数学,如果忽略全部的证明题,数学能学好吗? 
  如何更好理解级数中的概念? 

前一个讨论
如何评价孙悟空和比克的关系?
下一个讨论
天津饭是否是龙珠最强武术发明鬼才?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利