谢邀。
极限理论成立的前提至少要回答三个问题:
事实上不是所有数域上都能讨论极限,就比如在有理数域 上,以下数列没有极限
小明这时候会立即说,那就在实数域上讨论极限啊,谁跟你在有理数域上墨迹了?
于是我们接着问:何为实数?
小明:…
小明仔细回想初中课本(初一数学第一章讲的内容就是实数):实数分为有理数与无理数;实数能与数轴上的每一点一一对应……
小明讲得很好,他的第一个观点偏于实数的代数观点,第二个是纯几何观点,其实最后还差一个分析观点。代数观点概念清晰,可是有理数与无理数明明是你中有我我中有你(稠密),但却被无情地拆散,对于实数的看法不具有统一性;几何的观点非常形象,只是对于人眼不能察觉的精微之处力所不及。好理解,但说不清。
各有所长。
实数的分析观点有很多,最基本的是戴德金定理[1]。形象地来说,戴德金发现,如果没有无理数,那么数轴上将会有很多“空隙”;如果用无理数填补上,那么会得到一根完美的直线,它稠密且连续不断。这一填补的过程就叫做实数的完备化。
能够看得出,实数的完备性保证了数列极限不会跑到数轴的“空隙”中去。利用戴德金定理,可以证明确界原理、阿基米德公理成立,学过数学分析的人都知道,紧接着就可以推出其他五条实数公理了。其中尤其是柯西收敛准则,提供了数列收敛判别非常实用的方法。并且极限的定义也可以很自然地过渡而来(利用三角不等式)。事实上,收敛的数列我们干脆称之为柯西列,利用柯西列的概念,也可以给出实数的另外一种观点[2]:将等价的柯西列的极限视为实数,所谓等价,就是数列的极限相同。
我这里所谓的“可操作性”含义是模糊的:一方面我是指极限的定义是否具有可操作性,并非过分抽象或是感性的;另一方面,我是指极限的运算是否具有可操作性,这一点是显然的,因为,我们对待极限,和对待一个实数的态度几乎没有分别,正如前文关于柯西列的讨论。
我的讨论可能不够全面亦细节全无,但是极限立足于实数公理的过程相信有目共睹,这个简短的回答算是力所能及。