百科问答小站 logo
百科问答小站 font logo



是否存在无理点不连续、有理点连续的函数? 第1页

  

user avatar   zhe-yi-29-74 网友的相关建议: 
      

不存在。但是解释起来稍稍有点复杂,需要用到点集的语言。

以下说的“函数”都是指把实数映射成实数的函数。高维空间中的函数同理。

学过微积分就会知道,有一个被称为黎曼函数的奇妙函数 它在无理点连续、有理点间断。这里的关键原因是,对于任何 满足 的 只有有限个。类似地,任意给定可数个点,可以构造一个函数,它仅在这可数个点不连续。

但是,满足“无理点不连续,有理点连续”的函数是不存在的,因为:(1)函数的连续点全体构成 型集(即可数个开集的交集)。(2)有理数集 不是 型集。下面证明这两件事。

(1)对于给定的函数 定义它的振幅

则 在点 连续等价于 所以 的连续点全体为

不妨设它非空,因为空集显然是 型集。要证这个非空的集合是 型集,只要证任意 集合 是开集。显然 非空。

任意 因为 故存在 和 使

对于一切 存在 使 所以

故 即 由 的任意性,

所以 是 的内点。因此 是开集。

(2)假设有理数集是 型集,则无理数集是 型集,换言之, 这里的每一个 都是闭集。又因为有理数集是可数的,设 如此,

因为每一个 都是闭集,且 所以 没有内点,即 是疏朗集。而单点集 也是疏朗集,所以实数 是疏朗集的可数并,即第一纲集。这与Baire纲定理矛盾!

所以有理数集 不是 型集。




  

相关话题

  为什么有理数 1/49 看起来这么像是个无限不循环小数?循环节在哪里? 
  是否存在一个级数的∑an使得任何其他级数,只要通项大于它的都发散,小于的都收敛? 
  如何计算下面的级数? 
  分析学在其他数学分支中能发挥多大的作用? 
  如何求解(似乎是开放问题)级数(如下)? 
  谢惠民第十一章的第二组参考题的这个极限如何计算? 
  ln(x)取值为超越数的条件是什么? 
  有哪些高等数学实际应用的书? 
  请问这题有什么好的方法吗? 
  什么时候积分运算和级数求和可以调换顺序? 

前一个讨论
在区间【0,π/2】上,曲线y=sinx与直线x=π/2,y=0所围成的图形,绕y轴旋转的旋转体体积?
下一个讨论
哪些软件应用值得用Rust重写?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利