百科问答小站 logo
百科问答小站 font logo



是否存在无理点不连续、有理点连续的函数? 第1页

  

user avatar   zhe-yi-29-74 网友的相关建议: 
      

不存在。但是解释起来稍稍有点复杂,需要用到点集的语言。

以下说的“函数”都是指把实数映射成实数的函数。高维空间中的函数同理。

学过微积分就会知道,有一个被称为黎曼函数的奇妙函数 它在无理点连续、有理点间断。这里的关键原因是,对于任何 满足 的 只有有限个。类似地,任意给定可数个点,可以构造一个函数,它仅在这可数个点不连续。

但是,满足“无理点不连续,有理点连续”的函数是不存在的,因为:(1)函数的连续点全体构成 型集(即可数个开集的交集)。(2)有理数集 不是 型集。下面证明这两件事。

(1)对于给定的函数 定义它的振幅

则 在点 连续等价于 所以 的连续点全体为

不妨设它非空,因为空集显然是 型集。要证这个非空的集合是 型集,只要证任意 集合 是开集。显然 非空。

任意 因为 故存在 和 使

对于一切 存在 使 所以

故 即 由 的任意性,

所以 是 的内点。因此 是开集。

(2)假设有理数集是 型集,则无理数集是 型集,换言之, 这里的每一个 都是闭集。又因为有理数集是可数的,设 如此,

因为每一个 都是闭集,且 所以 没有内点,即 是疏朗集。而单点集 也是疏朗集,所以实数 是疏朗集的可数并,即第一纲集。这与Baire纲定理矛盾!

所以有理数集 不是 型集。




  

相关话题

  如何求得这个级数的和函数? 
  为什么 0.9 的循环等于 1? 
  这个极限题怎么做呢,希望大佬指教。? 
  第二问怎么用加边法思路? 
  无穷维流形是什么意思? 
  你遇到过的最难的积分题目是什么? 
  如何证明这个实分析有关问题? 
  请问如何理解极限的精确定义? 
  这个多元积分不等式怎么证? 
  如何证明一下等式? 

前一个讨论
在区间【0,π/2】上,曲线y=sinx与直线x=π/2,y=0所围成的图形,绕y轴旋转的旋转体体积?
下一个讨论
哪些软件应用值得用Rust重写?





© 2025-04-01 - tinynew.org. All Rights Reserved.
© 2025-04-01 - tinynew.org. 保留所有权利