百科问答小站 logo
百科问答小站 font logo



怎样证明这样一个行列式不等式? 第1页

  

user avatar   you-zhi-qing-nian-55 网友的相关建议: 
      

这里是一个使用cauchy-binet公式和cauchy不等式的做法。

对 的前m列展开,使用cauchy-binet公式:

使用柯西不等式,有

对两个括号内再次使用cauchy-binet公式, ,另一个同理,即原不等式。

但是感觉取等不是很好表述(子式和余子式对应成比例...?)。


user avatar   inversioner 网友的相关建议: 
      

不妨设 是满秩矩阵,否则不等式显然成立。

首先 ,而

令 ,则要证明

断言: 是正定矩阵。
证明:根据 满秩得到 也满秩(列向量线性无关),而且 。

由Schur公式我们有

只要证明 。

根据 为正定矩阵,我们得到 ,所以 是半正定矩阵。

断言:设 为同阶实对称矩阵, 正定,则 可以同时对角化。
证明:由正定性可设 , 可逆。令 。存在正交矩阵 使得 为对角矩阵。这时候令 ,则 。

我们同时对角化 : ,则只要证明

还是由Schur公式, 相抵于 。而 正定,所以 正定,得到 的对角元都是正数;而由 非负定,这些对角元不大于 对应的对角元。证毕。

取等条件取到时有 。因为 正定,存在可逆方阵 使得 ,故 ,这得到 ,从而由 可逆知 。所以取等条件为 。




  

相关话题

  下面这个关于质数的不等式如何证明? 
  如图题,如何不用“强拆”的方式证明? 
  有什么答案为5201314的高阶行列式(四阶以上)? 
  n阶矩阵A=(cos(αi−βj))n,如何证det(A)=0?n,如何证明det(A)=0? 
  如何学习高等代数?高等代数注重定理证明吗?学习数分需要会各种证明,高代也这样吗?高代注重计算吗? 
  怎么用一句话证明 det(M1 M2)=det(M1)det(M2)? 
  对任意多项式P_m(x),是否一定存在Qn(x),使P_m(x)Q_n(x)=Ax^(m+n)+B? 
  如何比较这两个数的大小? 
  请问这个积分不等式怎么证明? 
  据说是北大某年大一高代的最后一题?虽然很难,但就是想知道解答过程,还请会的大佬可怜可怜我这弱渣吧 ? 

前一个讨论
如何证明下面有关紧致集合连通性的问题?
下一个讨论
身体饥饿首先会吞噬肌肉还是脂肪?





© 2025-06-07 - tinynew.org. All Rights Reserved.
© 2025-06-07 - tinynew.org. 保留所有权利