百科问答小站 logo
百科问答小站 font logo



为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 第1页

  

user avatar   uhometitanic 网友的相关建议: 
      

如果 是有限维向量空间,那麽对於任何线性算子 均有:

,其中

(这条式把 的basis representation写出来就很容易证明)

是满秩意味着 ,於是根据上式这是等价於 ,亦即 只有零解

事实上,对於有限维向量空间 和线性算子 ,以下句子全部等价:

  1. 可逆
  2. 是单射
  3. 是满射
  4. 只有零解
  5. 存在唯一解
  6. 如果 是基底, 也是基底
  7. 如果 是 中的开集, 也是 中的开集
  8. 的matrix representation中所有行都是linear independent
  9. 的matrix representation中所有列都是linear independent
  10. 经过有限次elementary row operations後转换成identity
  11. 经过有限次elementary column operations後转换成identity
  12. 不是 的eigenvalue
  13. 的dual (定义为 )可逆

以上所说的在无限维向量空间中不适用




  

相关话题

  如何构造一个数学例子来证明零知识证明可行? 
  如何直观地说明为什么前 n 个自然数的立方和等于和的平方? 
  n阶矩阵A的各行各列只有一个元素是1或−1,其余元素均为0.是否存在正整数k,使得A^k=I? 
  如何理解n元线性方程组Ax=b,无解的充要条件为R(A)<R(A,b)? 
  这个极限怎么做呢? 
  如何用初等方法证明k阶齐次线性常系数递推数列的通项公式? 
  为什么n维欧式空间中的单位球面(n-1 sphere)的表面积和体积,在 n 趋于 ∞ 时,都趋于0? 
  函数方程 f(xy)=f(x)+f(y) 的严格解是什么?解是否唯一? 
  为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 
  如何构造一个数学例子来证明零知识证明可行? 

前一个讨论
大一微积分∫e*(-pt)sinωt dt(p>0,ω>0)这类问题如何解决?
下一个讨论
如何看待nature astronomy的一篇论文认为普朗克卫星的数据预示了宇宙可能是闭合的?





© 2025-03-31 - tinynew.org. All Rights Reserved.
© 2025-03-31 - tinynew.org. 保留所有权利