百科问答小站 logo
百科问答小站 font logo



为什么 A 为 n 阶满秩方阵时,Ax=0 只有零解? 第1页

  

user avatar   uhometitanic 网友的相关建议: 
      

如果 是有限维向量空间,那麽对於任何线性算子 均有:

,其中

(这条式把 的basis representation写出来就很容易证明)

是满秩意味着 ,於是根据上式这是等价於 ,亦即 只有零解

事实上,对於有限维向量空间 和线性算子 ,以下句子全部等价:

  1. 可逆
  2. 是单射
  3. 是满射
  4. 只有零解
  5. 存在唯一解
  6. 如果 是基底, 也是基底
  7. 如果 是 中的开集, 也是 中的开集
  8. 的matrix representation中所有行都是linear independent
  9. 的matrix representation中所有列都是linear independent
  10. 经过有限次elementary row operations後转换成identity
  11. 经过有限次elementary column operations後转换成identity
  12. 不是 的eigenvalue
  13. 的dual (定义为 )可逆

以上所说的在无限维向量空间中不适用




  

相关话题

  美国普通人的算术到底差到何种地步? 
  连续四个正奇数有可能都是素数吗? 
  在泛函和偏微等学科中,为什么要引进「弱」的概念? 
  证明了黎曼猜想就能马上得到素数公式吗? 
  如何评价第36届中国数学奥林匹克? 
  复合映射的符号f°g是怎么来的? 
  这个矩阵怎么求啊?求各位大佬解答? 
  Minecraft 的地形生成算法是什么? 
  如何看待科学网发布文章称「我国数学家证明 NP=P」,是真的吗?如果是,会带来怎样的影响? 
  优秀的程序员需要懂那些数学知识? 

前一个讨论
大一微积分∫e*(-pt)sinωt dt(p>0,ω>0)这类问题如何解决?
下一个讨论
如何看待nature astronomy的一篇论文认为普朗克卫星的数据预示了宇宙可能是闭合的?





© 2025-05-17 - tinynew.org. All Rights Reserved.
© 2025-05-17 - tinynew.org. 保留所有权利