百科问答小站 logo
百科问答小站 font logo



李群的伴随表示如何理解? 第1页

  

user avatar   anyusen 网友的相关建议: 
      

题主应该问的是伴随表示而不是伴随矩阵,李群的表示从几何的角度去理解尤其的自然,在这里安利一下。

1 李群的表示

首先我们研究李群的表示是因为李群可以变得相当的抽象,所以我们需要看李群中的元素作用到某个流形(或者就是某个空间)得到什么结果,这种从李群的功能角度去看问题可以把抽象的李群进行简化。首先介绍李变换群的概念: . 如果固定了元素g,我们可以得到一个的微分同胚映射,这个微分同胚映射我们叫做李变换群. 特别的,如果作用到的流形M还是一个线性空间V, 我们可以看出这个映射的特征是从李群G到一个线性变换的映射,线性变换就是矩阵,也就是说我们用矩阵表示了李群的性质,就叫做G的表示, V叫做表示空间。

2 李群的伴随表示

所以我们要寻找一个李群的表示,也就是要寻找一个线性空间作为一个表示空间。如果李群本身就是一个矩阵群的话,当然它本身也就构成了一个表示,叫做基本表示。但是除了基本表示,我们还能找到什么表示呢? 你可以想到对于任意的李群有一个现成的线性表示空间,那就是这个李群的李代数ps:李代数就是李群恒等元的切空间。

先说李群的伴随表示的定义:

从李群G到其李代数上的一个线性变换叫做这个李群的伴随表示。

下面我们进行一个简单的说明:

给定李代数中的一个元素A,我们可以由它通过指数映射生成李群中的一个单参子群, (一般的书中可能会多一个i来保证厄密性,不过这只是记号的问题)。

因为它是李群的元素,对于G,我们有一个自同构的映射,对于李群中的任意元素g,

.

如果让t作为参数,构成了一条在G上的另外的一条单参子群。我们求它的单位元上的矢量就可以得到另外一个李代数的元素,

第一步用到微分几何中的一条定理(曲线像的切矢等于切矢的像), 第二步我们就是引入了记号Ad。 也就是说自同构映射让李代数A转了一转。

以上我们就得到了李代数上的一个线性映射. 所以根据表示的定义Ad也就成为了李群的一个表示,叫做伴随表示。

关于为什么要寻找伴随表示,我觉得和wigner定理有点关系,wigner定理说一个粒子对应于对称群的一个表示,为了在一个对称理论中加入更多的粒子,就要寻找更多的表示,如果寻找到了伴随表示,就可以将一部分的粒子放在伴随表示中,起到了一个扩充的作用,实际上量子场论就是这么干的。其它的因为我量子场的基础不好,就不多说了。

这种几何的理解可以和其它理解中(例如使用结构常数)完美的对应,并且更加直观和容易。所以推荐这么理解一下。


参考资料: 梁灿彬 《微分几何与广义相对论》中册附录G




  

相关话题

  如何看待清华大学丘成桐数学科学领军人才培养计划? 
  请问这个式子有没有简便算法(写法)? 
  在热统里说粒子只会在一个态上,为啥没有叠加态这一说? 
  为什么弧度制的性质如此优良? 
  无限群是否一定含无限阶元?无限群是否一定有无限多个子群? 
  如何通俗理解矩阵的秩? 
  这个极限怎么求?求大佬帮忙? 
  为什么宇宙当中的温度会有上下限? 
  为什么有那么多人不承认0.9无限循环=1,且振振有词? 
  人类是否能想象出多维空间的形态? 

前一个讨论
怎么才能让自己暗恋的人也喜欢自己那呢?
下一个讨论
逃离丧尸包围的游戏,你能否逃生?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利