百科问答小站 logo
百科问答小站 font logo



点集拓扑为什么要这样定义?具有几何意义吗? 第1页

  

user avatar   klam 网友的相关建议: 
      

完全可以用集合知识导出?题主你真的看明白了那三条定义说的是什么意思了么?


所谓一个拓扑,说的是在一个集合上给出了一个指定方式,来指定哪些子集叫做『开集』。这个指定方式是完全人为的。同样的一个集合,完全可以在上面定义不同的拓扑,使得一个拓扑下的开集在另外一个拓扑下不是开集。就比如在实数轴R上有最自然的把开区间叫做开集所导出的拓扑,R上还可以定义另外一种拓扑,离散拓扑,也就是把R上的所有单点集叫做开集所导出的拓扑,这两个拓扑下的开集很明显是不一样的。而且在实数轴R上还可以定义更加稀奇古怪的拓扑。


所以题主你为什么会觉得这些完全不一样的指定方式可以用集合知识导出?我甚至都无法理解你到底想错到了什么地方去了。所以只能建议你再去看看书上的定义和例子。又或者像 @Yuhang Liu 说的那样,『先去看看欧氏空间中的开集闭集长啥样』。


关于拓扑和几何的关系。简单来说所有的几何学的研究对象都是拓扑空间,只不过不同的几何会在上面添加不一样的条件,使得它所研究的拓扑空间带上某个附加的结构。比如微分拓扑相当于是在研究一种叫做『流形』的特殊的拓扑空间。微分几何则可以看做是在微分拓扑的基础上加上叫做切丛和余切丛的结构,黎曼几何则是在微分几何上加了一个黎曼度量,从而可以考虑『距离』和『弯曲程度』等问题。


一般来说,附加的结构和要求越多,所研究的对象就越具体,研究的方法和结果就越多。




  

相关话题

  熵权TOPSIS中二级指标的相对接近度怎么计算,一般计算的都是一级指标的相对接近度,困扰我好久了。? 
  数学类课程定理的复杂证明有必要掌握吗? 
  高中生物中讲存在单层和双层膜细胞器,那么单双层膜怎么区分?理论依据(数学和生物学的依据最好)有哪些? 
  本人高二理科生,欲修拓扑学,求推荐入门书籍。? 
  如何证明 1^2021+2^2021+…+1000^2021 能被 7、11、13 整除? 
  如何理解矩阵特征值? 
  一年级第一次考试语文20,数学40,曾经狠狠得罪过老师,可以进行阴谋论吗? 
  21世纪以来(基础)数学在社会科学中有哪些应用? 
  非数学系学的数学离数学探索的前沿有多远? 
  如果历史上没有牛顿、莱布尼茨、欧拉、高斯、阿贝尔……等人,我们的科学、技术和文明还有这么强大吗? 

前一个讨论
写东西中英夹杂是什么心态?
下一个讨论
本科数学系,未来只在业余时间做数学研究有可能吗?





© 2025-04-20 - tinynew.org. All Rights Reserved.
© 2025-04-20 - tinynew.org. 保留所有权利