百科问答小站 logo
百科问答小站 font logo



能否用严格的数学语言定义「展开图」? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

感谢大佬邀(钓)请(鱼).

我们一般所说的展开,是指的是可展曲面,例如柱面、锥面;而球面是没办法展的,即“不可展曲面”. 那么“可展”是怎么回事呢?

结论

高斯大神很完美地解决了这个问题:他发现凡是可展的曲面,它的高斯曲率为零,反之亦然. 更近一步,他定义了所谓第一基本形式

而可展曲面的第一基本形式都可以通过等距变换(不改变第一基本形式)而化为 ,也就是平面上的欧氏度量,当且仅当它的高斯曲率为 . 而对于一般的曲面,充其量只能化为 .

所以找到这个等距变换,我们就可以将这个可展曲面“展开”——映为平面.

微观解释

高斯曲率,就是曲面在一点处的两个主曲率的乘积 .

微观上,高斯曲率为零,就意味着至少有一个主曲率为零,也就是说在此方向上本来就是“直”的,所以将与之正交的另一个方向“掰直”就好了;两个正交的方向都是直的,局部上它就是一块平面. 而且这个掰直的过程不会影响前者的曲率始终为零. 于是乘积永远是零. 也就是说,其中一个主曲率为零,给另一个主曲率的变化带来了极大的自由——这就是可展的原因.

但是对于非可展曲面,即高斯曲率不为零,你想将其中一个主方向掰直,另一个主方向也会跟着变化,一个想变直,另一个就变得更弯,因为要保证两者乘积不变. 最终,你哪个也别想掰直.


越说越觉得奇怪……


user avatar   tai-tian-xun-ye-zhi-ming 网友的相关建议: 
      

(在连续处)保角保距保直线的(几乎处处)连续映射。




  

相关话题

  请问各路神仙,大神们,为什么圆锥的体积公式要有个三分之一(本人高一)? 
  如何证明T1拓扑群是T3的? 
  如果在莫比乌斯带或者球面上下围棋会怎么样? 
  分析学在其他数学分支中能发挥多大的作用? 
  一个同时有内切椭圆和外接椭圆的多边形满足什么条件? 
  f(x)=sin(x), x∈[0, π/2] 是不是某个椭圆的一部分? 
  能否用严格的数学语言定义「展开图」? 
  请问一条满足: 法向量和法向量二阶导数平行的空间曲线是什么曲线? 
  数学或者自然科学中有哪些理论技巧一经提出就大大化简了过去某些问题很困难繁琐的解答? 
  看到正方形能想到什么? 

前一个讨论
你有没有推导过一个复杂的却「贴近生活」的公式?
下一个讨论
如何理解量子霍尔效应?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利