百科问答小站 logo
百科问答小站 font logo



数学经典教材有什么? 第1页

  

user avatar   long-wang-miao-de-xian-tong 网友的相关建议: 
      

谢邀。
我只推荐一下我看过的而且觉得非常值得一读的。每个人对数学教材的品位不同,所以这些只是我个人的观点。为了让各位初步了解每本书的特点,我稍微写了下我自己的感受。
另:我会不定期更新这个答案,删掉或补充一些书,代表我重新回来看的时候一些不一样的看法。

数学分析:
Spivak《Calculus》入门最佳,很多定理给出的是“感性”的证明,习题又多又好
Rudin 《Principles of Mathematical Analysis》练级,主要是前八章,并不适合初学
提一下卓里奇,俄罗斯这边的人说他们都不怎么用卓里奇了。可能大一一上来就学那么多东西确实有些“残忍”。

多元分析与流形:
Munkres《Analysis on Manifolds》第三章第四章太啰嗦但其它章出奇的好,第一章我认为是写的最好的对拓扑和线性代数的review,讲Tensor那章也是很好,注意一点,学习这本书之前最好有过一些多元微积分的基础,否则看第三四章的时候有点空中楼阁的感觉
Loring Tu《An Introduction to Manifolds》简练易懂,且不需要多少点集拓扑的知识,有些notation很奇怪,比如开区间。对我来说,这本书最大的优点就在于它的诚实。很多书前言会写不需要太多prerequisites,但你读着读着就会发现作者在开玩笑。这本书作者真的就做到了。还有它的习题量合理,难度适中,且都有hint,极为适合自学。总之强推。
Nigel Hitchin《Differentiable Manifolds》这只是一个讲义,但是写的很好。

线性代数:
《Linear Algebra Done Right》必备,目前为止最喜欢的数学书
Hoffman《Linear Algebra》字典,能用到的这都有,但有些老,有些过于代数

抽象代数:
Robert Ash《Basic Abstract Algebra》这个书很适合自学和复习,题不多但很精致,并且都有答案。所有的证明都是范本一样的书写,并且选取的都是最好的证明。内容上不多,即使自学也不会觉得迷失。我当时期末复习就靠这本书和老师的笔记。
Dummit&Foote《Abstract Algebra》例子多,是个定理的,是个结论的这书里都有。就是太厚了,习题多到做不完,好在都有答案
Rotman 《Advanced Modern Algebra》这个书AMS现在出第三版了,国内出过第一版,运气好能找到第一版。这个我现在觉得是写得最好的,但是前提是你得有点基础。Rotman的书都不错
Mathematics -- J.S. Milne这里面的lecture notes处理都很现代,Milne出品,必属精品。
说一下Lang的大部头,我的教授是这么说的:This is not a book for reading.他觉得Lang的书主要是reference book,所有定理的证明基本上选取的都是最简洁的,而不是最易懂的。另外,Lang也可以用来检查自己哪里还没有学懂。

拓扑:
Munkres《Topology》圣经
John Lee《Introduction to Topological Manifolds》不失几何观点,同时又不像Hatcher全是YY。多补充一句我为什么不喜欢Hatcher这种风格。一本书写得再难懂,你多想想还有可能懂,但是如果是形象化的靠想象的证明,你想不出来就是想不出来。

复分析:
Stein 《Complex Analysis》借用我同学的一句话,读这本书就像读小说一样,相当流畅。但深度不足,有些证明并不严谨,所以天赋高的可以考虑下面的这本:
Markushevich 《Theory of Functions of a Complex Variable》又是苏联人留给数学界的一个完美的作品。Amazon全五星评价,细致入微,证明严谨友好。总之哪里学不懂,来这里找,肯定有,也肯定讲得更好。缺点就是太厚了,铺垫太多,前两百页左右其实可以直接跳过去。

实分析:
Zygmund and Wheeden《Measure and Integral》这本书写得很好,风格有点像Rudin,很concrete。我最喜欢这本书的一点是该有的定理和性质都会给证明,不像有些书放在习题里,没有老师的话就错过了。最近出了新版,是Wheeden一个人写的。
Donald Cohn 《Measure Theory》作者并不是一流数学家,但是书写的难得的好,挑不出毛病来。国内应该能买到第一版。
Piemarco Cannarsa and Teresa D'Aprile 《Introduction to Measure Theory and Functional Analysis》这书我觉得大部分人应该都没听说过吧……但是我为了复习实分析大概的读了一些,感觉写的很好。内容上不贪多,所用符号不乱,给出的证明简洁。

概率论与随机过程:
Grimmett&Stirzaker 《Probability and Random Processes》这本算是本科和研究生都可以看的概率书,题是真多,不过有配套的答案,开刷吧!
Robert Ash 《Probability and Measure Theory》这是一本既可以当实分析教材又可以当概率论教材的书,Ash写的所有书没有不好的,这本也一样。这本书证明都非常的标准,习题也均有答案,选取的topic也很恰当,很适合自学。我非常推崇Ash的书的一个原因就是他写的东西都是很标准的,是正确地学这个东西的方式。Ash有个习惯,就是学完一个东西就写本书,所以他写的书跨度极大,什么方向都有。
Rick Durrett 《Probability: Theory and Examples》初学概率论不觉得这本书写得好,现在才觉得是真好啊。习题给劲,证明简介,结构清晰,选题恰当。对于初学者不甚友好,但是有过很好的测度论基础和一些概率基础之后再看,才会明白为什么北美基本所有学校都用这本书当教材。
Erhan Cinlar 《Introduction to Stochastic Processes》
Durrett 《Essentials of Stochastic Processes》
两本标准的随机过程书,都很好,而且不assume测度论。

组合学:
Miklos Bona《A Walk Through Combinatorics》没看过几本组合书,但我认为这本很好,比大名鼎鼎的A Course in Combinatorics要简单不少。

ODE:
Arnold《Ordinary Differential Equations》初学有点难(如果初学ODE这本书能读懂,那内功真的很深厚了),不过不像其他ODE书那么无聊。

更多的东西可参考:
Chicago Undergraduate Mathematics Bibliography Chicago undergraduate mathematics bibliography
另外说一下,抽象代数还可以看一下Benedict Gross的视频,你不可能听到更清楚地讲解了。
值得最后一提的是,ETHZ的很多老师写的讲义都很好,比如Dietmar Salamon等,Nigel Hitichin写了几个虽短但是精致的lecture notes,善于从网上找资源,也是很好的,毕竟免费。




  

相关话题

  如何处理这类三个连乘的积分呢? 
  如何优雅地测量一只猫的体积,而不使其感到惊恐或受到伤害? 
  如何计算投掷多个骰子得到某个给定总点数的概率? 
  中国在国际奥数比赛中,近些年几乎是压倒性的优势,可是为什么至今没有人获得菲尔兹奖? 
  英国人真的连乘法口诀都不熟悉么? 
  利用微分法计算定积分的结果是真实值吗? 
  如何看待清华大学数学新领军计划和丘班综合测试? 
  请问这道题能不能带值计算? 
  二本到 985 读研,跟不上心态崩了怎么办? 
  为什么是数学而不是文学是“科学的皇后”? 

前一个讨论
为什么大学的课程(例如高数、线性代数)比高中难很多,老师却讲的比高中快几倍,作业也非常少?
下一个讨论
这个函数的不定积分是初等函数吗?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利