百科问答小站 logo
百科问答小站 font logo



怎么理解 Mayer-Vietoris 序列? 第1页

  

user avatar   liu-yang-zhou-23 网友的相关建议: 
      

我是搬运工[1]

首先明白一个概念——

结构元

简单说,共轭元就是 维无边子流形 ,它不可缩,不是高维空间的边界。并且它可以分解为可数个 维闭圆盘的并,这些圆盘的交集等于它们边界的交集。

比如轮胎面的纬圆,可以被首尾相接的一维闭圆盘——闭线段分解。它就是一个 维结构元。我们更关注与它同调的等价类 .

共轭元

如果 存在逐点与之横截相交(不是相切那种相交)的结构元同调类 ,则 称为 维共轭元.

就比如轮胎面的纬圆和经圆,就是互为对偶共轭元.

同调类几何化

而共轭元分为自由与非自由,有以下关键定理——

定理 是正则流形,同调群

是自由子群, 为挠子群,它们的生成元基分别是自由共轭元与非自由共轭元.

关于自由非自由共轭元的定义为了叙述方便我就省去了。


然后回到我们的目标——

序列

,则有正合列

其中

几何解释: 维共轭元 只有如下情况:

  • 或 ;

表示 与 在边界粘接. 与是对应以上情况分别有:

  • .

于是由 的定义,显然有 ;

于是 , 也容易验证.

参考

  1. ^ 马天《流形拓扑学——理论与概念的实质》



  

相关话题

  有哪些只使用纸和笔就能愉快玩耍的游戏? 
  能够在几分钟的时间内向普通本科生解释清楚最前沿的理科科研工作(偏理论)吗? 
  怎么证明勾股定理? 
  有哪些用初等数学就可以迅速解决的高等数学问题? 
  怎么通俗地理解张量? 
  退休后的数学家或物理学家通常怎么打发生活? 
  数学系学渣怎么写毕业论文呢? 
  数学类研究的科研经费用在哪里? 
  如何让普通人明白数学有多复杂? 
  如何理解微分几何中的切空间? 

前一个讨论
如何通俗地理解「非牛顿流体」,这种流体的特性有何特性?
下一个讨论
有没有对于各种榫卯结构,在数学上的研究?





© 2025-04-16 - tinynew.org. All Rights Reserved.
© 2025-04-16 - tinynew.org. 保留所有权利