百科问答小站 logo
百科问答小站 font logo



LSTM如何来避免梯度弥散和梯度爆炸? 第1页

  

user avatar   SeptEnds 网友的相关建议: 
      

“LSTM 能解决梯度消失/梯度爆炸”是对 LSTM 的经典误解。这里我先给出几个粗线条的结论,详细的回答以后有时间了再扩展:

1、首先需要明确的是,RNN 中的梯度消失/梯度爆炸和普通的 MLP 或者深层 CNN 中梯度消失/梯度爆炸的含义不一样。MLP/CNN 中不同的层有不同的参数,各是各的梯度;而 RNN 中同样的权重在各个时间步共享,最终的梯度 g = 各个时间步的梯度 g_t 的和。

2、由 1 中所述的原因,RNN 中总的梯度是不会消失的。即便梯度越传越弱,那也只是远距离的梯度消失,由于近距离的梯度不会消失,所有梯度之和便不会消失。RNN 所谓梯度消失的真正含义是,梯度被近距离梯度主导,导致模型难以学到远距离的依赖关系。

3、LSTM 中梯度的传播有很多条路径, 这条路径上只有逐元素相乘和相加的操作,梯度流最稳定;但是其他路径(例如 )上梯度流与普通 RNN 类似,照样会发生相同的权重矩阵反复连乘。

4、LSTM 刚提出时没有遗忘门,或者说相当于 ,这时候在 直接相连的短路路径上, 可以无损地传递给 ,从而这条路径上的梯度畅通无阻,不会消失。类似于 ResNet 中的残差连接。

5、但是在其他路径上,LSTM 的梯度流和普通 RNN 没有太大区别,依然会爆炸或者消失。由于总的远距离梯度 = 各条路径的远距离梯度之和,即便其他远距离路径梯度消失了,只要保证有一条远距离路径(就是上面说的那条高速公路)梯度不消失,总的远距离梯度就不会消失(正常梯度 + 消失梯度 = 正常梯度)。因此 LSTM 通过改善一条路径上的梯度问题拯救了总体的远距离梯度

6、同样,因为总的远距离梯度 = 各条路径的远距离梯度之和,高速公路上梯度流比较稳定,但其他路径上梯度有可能爆炸,此时总的远距离梯度 = 正常梯度 + 爆炸梯度 = 爆炸梯度,因此 LSTM 仍然有可能发生梯度爆炸。不过,由于 LSTM 的其他路径非常崎岖,和普通 RNN 相比多经过了很多次激活函数(导数都小于 1),因此 LSTM 发生梯度爆炸的频率要低得多。实践中梯度爆炸一般通过梯度裁剪来解决。

7、对于现在常用的带遗忘门的 LSTM 来说,6 中的分析依然成立,而 5 分为两种情况:其一是遗忘门接近 1(例如模型初始化时会把 forget bias 设置成较大的正数,让遗忘门饱和),这时候远距离梯度不消失;其二是遗忘门接近 0,但这时模型是故意阻断梯度流的,这不是 bug 而是 feature(例如情感分析任务中有一条样本 “A,但是 B”,模型读到“但是”后选择把遗忘门设置成 0,遗忘掉内容 A,这是合理的)。当然,常常也存在 f 介于 [0, 1] 之间的情况,在这种情况下只能说 LSTM 改善(而非解决)了梯度消失的状况。

8、最后,别总是抓着梯度不放。梯度只是从反向的、优化的角度来看的,多从正面的、建模的角度想想 LSTM 有效性的原因。选择性、信息不变性都是很好的视角,比如看看这篇:r2rt.com/written-memori




  

相关话题

  如何看待有的物理学家说物理学就是几何学,以及物理学需要新的几何学注入活力? 
  4x5的表写入20个不同正整数,相邻数不互质,表中最大的数至少是多少? 
  为什么世界上最顶尖的科学家很多是单身汉? 
  清华踩线和复旦数学选哪个? 
  现在的纯数学家们对于自然科学的关注大概是怎样的程度? 
  为什么数学物理竞赛国家集训队只有两个女生,菲尔兹奖得主只有一个女性,诺贝尔物理学奖得主只有3个女性? 
  小样本学习中关于虚拟样本有效性的问题? 
  一个具有介值性的函数是否一定存在原函数? 
  三角函数存在的意义是什么? 
  当前人工智能特别是深度学习最前沿的研究方向是什么? 

前一个讨论
word2vec 相比之前的 Word Embedding 方法好在什么地方?
下一个讨论
如何看待这位知友提出的这个声称只有他能解的问题?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利