百科问答小站 logo
百科问答小站 font logo



如何正确理解群论中的同态基本定理? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

本文使用 Zhihu On VSCode 创作并发布

为了全面地认识这个定理,我们有必要先从群同态讲起: 若f是到的群同态(group homomorphism),则对于所有的均有:

若f是双射(bijection),则称群G和H同构(isomorphic)即。 由于一个f是双射当且仅当f同时是单射(injection)满射(surjection),所以我们可以先来研究一下f的性质。

为了便于后续的推导,让分别表示G和H的幺元(identity element)

单射与核

f由于是单射当且仅当对于所有的有。此时使用消去律可得:

而事实上当f不是单射且时该式依然成立,因此我们把G内所有能被映射到的元素集合成为它的核(kernel)

因此f是单射当且仅当。

核的性质

即使G的核不是,我们也能够通过从G构造一个新群来构造单射。但在此之前,我们有必要先研究研究的代数性质:

  • 对于所有的均有,所以是运算封闭的。
  • 因为的运算继承了所以上的运算满足结合律
  • 由于,所以存在幺元。
  • 对于,有,所以也是关于元素求逆运算封闭的。

至此,我们得知,即G的核是G的子群。事实上,对于所有的和均有:

因此,即G的核是G的正规子群。

把核商掉

由于,我们可以用它来构造商群。同样地,我们可以在f的基础上定义一个新的映射使得对于每一个陪集均有

通过商群的性质易知是群同态。现在假如则:

因为是满射,我们便得到:

又根据的陪集就是对的划分,有。综上所述,我们便得到了群同态基本定理:

总而言之,以群同态为起始点,通过研究它是否单射我们发现了群的核;通过研究核的性质我们构造了商群;最后利用商群的性质我们发现可以在商群上建立同构映射。于是,群同态基本定理就被发现了。




  

相关话题

  如果引进新的运算,一元五次方程会不会有通用的求根公式? 
  这张算数入门图(一只兔子加一只兔子)里的题在算什么? 
  是否存在实数a>1使得数列sin(a^n)收敛? 
  偏序集与完备格? 
  怎么理解 Mayer-Vietoris 序列? 
  如何证明马尔科夫链一定会达到稳态? 
  这个题的计算方法是什么? 
  如何判断一个方阵变换会导致源向量模长缩小? 
  定义域为空集的空函数该怎么理解? 
  为何中学阶段不系统讲授一元三次四次方程?总感觉高中数学的很多内容在初中数学上没有根基,完全是空降的? 

前一个讨论
「可愛い」是日本本土的和语词(仅借了汉字)还是从古代中国借的汉语词?
下一个讨论
为什么总裁文里总是有很多性强迫,甚至强奸的情节?





© 2025-04-02 - tinynew.org. All Rights Reserved.
© 2025-04-02 - tinynew.org. 保留所有权利