百科问答小站 logo
百科问答小站 font logo



如何正确理解群论中的同态基本定理? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

本文使用 Zhihu On VSCode 创作并发布

为了全面地认识这个定理,我们有必要先从群同态讲起: 若f是到的群同态(group homomorphism),则对于所有的均有:

若f是双射(bijection),则称群G和H同构(isomorphic)即。 由于一个f是双射当且仅当f同时是单射(injection)满射(surjection),所以我们可以先来研究一下f的性质。

为了便于后续的推导,让分别表示G和H的幺元(identity element)

单射与核

f由于是单射当且仅当对于所有的有。此时使用消去律可得:

而事实上当f不是单射且时该式依然成立,因此我们把G内所有能被映射到的元素集合成为它的核(kernel)

因此f是单射当且仅当。

核的性质

即使G的核不是,我们也能够通过从G构造一个新群来构造单射。但在此之前,我们有必要先研究研究的代数性质:

  • 对于所有的均有,所以是运算封闭的。
  • 因为的运算继承了所以上的运算满足结合律
  • 由于,所以存在幺元。
  • 对于,有,所以也是关于元素求逆运算封闭的。

至此,我们得知,即G的核是G的子群。事实上,对于所有的和均有:

因此,即G的核是G的正规子群。

把核商掉

由于,我们可以用它来构造商群。同样地,我们可以在f的基础上定义一个新的映射使得对于每一个陪集均有

通过商群的性质易知是群同态。现在假如则:

因为是满射,我们便得到:

又根据的陪集就是对的划分,有。综上所述,我们便得到了群同态基本定理:

总而言之,以群同态为起始点,通过研究它是否单射我们发现了群的核;通过研究核的性质我们构造了商群;最后利用商群的性质我们发现可以在商群上建立同构映射。于是,群同态基本定理就被发现了。




  

相关话题

  A 和 B 在 100 × 100 的平面空间内移动,两种情况下哪一种相遇的概率更大? 
  甲有101个硬币,乙有100个硬币,两人随机撒在地面上,甲比乙正面朝上多的概率是多少? 
  请问这道数分题目该如何处理呢,如下? 
  是否存在仅由1和2组成的长度为2^n的序列,可以做到在这个序列中取出所有含1和2的长度为n的序列? 
  当今世界数学已经发展到本科生难以理解的地步了吗? 
  你认为四大棋哪个与数学(理科)关联最大? 
  如何入门 Yamabe 问题? 
  如何利用群论的知识解决三阶魔方? 
  我本科是信息与计算科学专业,想考研但是不知道选什么专业,在纠结考数学还是计算机? 
  为什么数学专业要学计算机? 

前一个讨论
「可愛い」是日本本土的和语词(仅借了汉字)还是从古代中国借的汉语词?
下一个讨论
为什么总裁文里总是有很多性强迫,甚至强奸的情节?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利