百科问答小站 logo
百科问答小站 font logo



(G/H)×H是否同构于G? 第1页

  

user avatar   malloy-37 网友的相关建议: 
      

不是,考虑整数加群 ,它的正规子群 与 同构,而商群 是2阶循环群,分别考虑群 和群 的生成元, 只有一个生成元,而 有两个,虽然这两个集合的元素个数是相等的(等势),但是它们的群结构不相同(生成元不同),所以 。

然后我们尝试寻找一个条件来让 成立,实际上反例往往也是为我们排雷的好帮手,受以上反例启发,我们应该尽量避免选取 为无限群,且最好要使 同构于 的一个子群( 的任何子群都不与 同构)。那么答案就更进一步了,我们都知道 是 过 的扩张,扩张核为 ,显然 ,若 同构于 的一个子群,则 就是半直积并同构于 。所以我们要找的就是一个能证明 的条件,我们不妨把条件定为:

同构于 的一个正规子群,即

这个条件让半直积 成为了内直积,那么上面的条件就是我们要的答案了,因为

结合 ,即得 。

Q.E.D

并且这个条件还是必要的,因为总有 。

而实际上定理2.5.5的描述还给出了一个更一般的内直积 同构于外直积 的充分必要条件。




  

相关话题

  为什么伽罗瓦19岁就发明的群论,绝大多数那个专业的研究生终其一生都学不会? 
  历史上,近世代数中环和域的概念是怎样逐步建立的? 
  从古典的解析几何到现代的代数几何,研究的问题都有些什么变化?又有哪些共同的问题? 
  对于一个整环而言,①任意两个非零元的最大公因子存在,②它的不可约元一定是素元,是否等价? 
  哪个整系数多项式方程的根是 √2 + √3 + √5,如何得到这个方程? 
  抽象代数,如果G是一个奇数阶群,则G中的任何元都是一个唯一确定的元的平方,怎么证明,尤其是唯一性证明? 
  多次试图学习抽象代数,但屡屡受挫,该怎么办? 
  从古典的解析几何到现代的代数几何,研究的问题都有些什么变化?又有哪些共同的问题? 
  SU(4)和SO(6)的“自由度”都是15,它们具有同态关系吗? 
  一个范畴问题? 

前一个讨论
何为神之一手?
下一个讨论
既然暗物质“观测”不到为什么还要定义为物质?





© 2025-05-10 - tinynew.org. All Rights Reserved.
© 2025-05-10 - tinynew.org. 保留所有权利