百科问答小站 logo
百科问答小站 font logo



是否存在f: [0,1]→R+, 使得f在[0,1]的黎曼积分为0? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

你自己不都快做出来了。。。

令 。假设 在 Riemann可积,则一定Lebesgue可积,故 是Lebesgue可测函数,故 是Lebesgue可测集。按照你说的(2),每个 (这里我顺便补充一下原因,倘若 ,则 ,矛盾)。

注意到 单调递增趋于 (因为 是映到 的),故由测度的连续性知 ,但 ,矛盾。

顺便,这个题有简单证法。还是假设Riemann可积,则Lebesgue可积。再因为 非负可测以及 知道 几乎处处为 ,这就已经违背了映到 的条件了。

此外,用你说的(1)处处不连续也可以立刻看出来,因为黎曼可积等价于几乎处处连续,不过这个等价性的证明比较复杂。




  

相关话题

  既然负数开平方可以拓展出一个复数系,那 1/0 也可以拓展出新的数系吗? 
  问一下大佬这个题怎么想? 
  微分几何中为什么定义指数映射? 
  有什么著名的理论或者定理吗? 
  哥哥贷款炒股亏了70万,父母都是农民,为此我大一辍学,有什么办法能挽救我们家? 
  微分几何中为什么定义指数映射? 
  如何证明呢? 
  如何证明一阶导数的上确界的平方小于等于原函数的上确界乘以二阶导数的上确界的二倍? 
  怎么用实数系的公理证明0与任何数相乘都等于零(求大佬指教)? 
  请问这个多重积分的极限怎么求? 

前一个讨论
请问下面两个极限问题如何解决?
下一个讨论
运用复数证明平面几何的原理有哪些?





© 2025-06-07 - tinynew.org. All Rights Reserved.
© 2025-06-07 - tinynew.org. 保留所有权利