百科问答小站 logo
百科问答小站 font logo



请问该如何证明? 第1页

  

user avatar   luo-yuan-yuan-72-48 网友的相关建议: 
      

令 为可数个开区间的并满足 ,

则可知 (注: 就是所谓的等测包)。

令 , 可知 可测,并且 ,那么 , 因为 ,所以 (想象一下集合的维恩图)

这时由于

可得

这时,利用 的可测性和Caratheodory条件,

可得 , 因此, 可测。

从而有 可测。


user avatar   zhai-sen-8 网友的相关建议: 
      

默认这里的measurable是指 中的Lebesgue measurable。这里需要一个引理,如果 是无交并,并且其中有一个是闭集,那么 。

关于第一问,因为 是Lebesgue measurable的,所以对任何 ,存在一个闭集 使得 。根据无交并 并且 是闭集知 (条件 可以保证这里的减号是良定义的,下面类似的情况将不再说明)。

根据outer measure的定义,存在开集 使得 。

令 ,则显见 ,并且 是闭集的交,故还是闭集。同时 ,故 。

直接计算有

因此我们证明了:对于任何 ,总存在闭集 使得 ,这就表明 是measurable的。于是 是measurable的。

第二问那个等式实际上是Caratheodory条件,当然这里就直接从第一问推出来就好了。从左往右的方向是因为 显见都是Lebesgue measurable的,而Lebesgue measure具有可列可加性。从右往左的方向是因为第一问。

(看这个记号很像Stein的风格,回头查了一下,果然是Stein的Real analysis中Chapter 1的第5题)




  

相关话题

  如何自学数学以达到数学博士的水平? 
  除了Weierstrass函数,还有哪些处处连续处处不可导的实变函数的具体例子? 
  4x5的表写入20个不同正整数,相邻数不互质,表中最大的数至少是多少? 
  有什么理论复杂但是实现简单的算法? 
  数学上有什么有名的结论是利用另一个数学分支上的知识得到的? 
  高中数学挺好的 但大学不学数学了 所以大学自学数学难吗? 
  用微积分怎么证明勾股定理? 
  如何反对同学这样解释无理数和有理数一样多? 
  如何证明单位圆周上n个点两两距离乘积的平方当且仅当各点均匀分布时取到最大值nⁿ? 
  若 a=0.248163264128256...,请问 a 是否为有理数?理由是什么? 

前一个讨论
如果把行列式定义中的(-1)^(逆序数)去掉,这种新的运算能用在哪里呢?
下一个讨论
如何证明R1可测函数覆盖的区域是可测的?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利