百科问答小站 logo
百科问答小站 font logo



实数域上的连续函数f,存在一个有理数a和一个无理数b使得a与b均为f的周期。如何证明f为常值函数? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

我来补充一下 @左笔一支 的回答(就是说为什么没有最小正周期的连续周期函数一定是常函数,一定要注意连续性的条件是必须的)。加上我的补充,他的证明就是完整的。

引理1 如果 上的连续周期函数 没有最小正周期,设 是所有正周期组成的集合,则

证明:设 ,这表明对任何正整数 ,总能找到 使得 。因此数列 。由 的连续性,对任何 ,都有 。由于常数列的极限还是本身,故 ,这表明 也是周期。假如 ,则 ,故 有最小值 ,矛盾。故

引理2 对于任何两个正实数 ,都存在 使 ( 的含义同引理1)

证明:由引理1 ,并且 ,所以在 中总能找到一点 使 。设正整数 是使 的最小正整数。则必然有 。(若不然,则 ,这样 就是满足条件的更小的正整数,矛盾)。而根据周期的性质,由 知 ,所以取 就完成了证明。

定理 如果 上的连续周期函数 没有最小正周期,则 是常函数。

证明:任取实数 。由引理2,对任意正整数 ,总能找到 使得 ,这样就有 且 。由 的连续性知 。由于常数列的极限是本身,故 。由 的任意性知 是常函数。




  

相关话题

  线性代数有什么用?学习线性代数的意义在哪? 
  83,63,90,70,100,是什么规律? 
  二项分布的个位数期望怎么算? 
  为何诺贝尔奖得主大多白发苍苍,但规定得主年龄必须在四十岁以下的菲尔兹奖是数学界的最高荣誉之一? 
  高等数学到底有什么用,为什么大学要学? 
  是否存在一个由1和-1构成的数列an,使得对于任意k和b,sin(kn+b)*an/n总是收敛级数? 
  请问这道代数不等式怎么证? 
  在集合的势的意义下,是否存在比实数集更大的全序集? 
  如何看待 bilibili up主 Happylee 对 0.999...≠1 的证明? 
  流汗黄豆有什么数学表达? 

前一个讨论
代数学莫宗坚的这道题怎么做?
下一个讨论
长期住在工地是一种怎样的体验?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利