百科问答小站 logo
百科问答小站 font logo



运用复数证明平面几何的原理有哪些? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

顺手一答。如果学过复变函数中保形映射的部分(尤其是分式线性变换),那么就可以与平面几何发生联系。比如著名的托勒密定理,如果 顺次共圆,那么 。为了证明这个定理,假设这四个点都在复平面上并且点 在原点,那么分式线性变换 会把圆映成直线(这是因为圆过原点,所以image过 ,而只有直线才可以过 )。根据保形映射的保角性不难得知映射以后四个点 仍然是依次共线的。而直线上的距离关系 是显然的。经过计算就知道它等价于 ,就得证了。竞赛生一般会把上述操作称为反演,他们对这些技巧已经相当熟练了。




  

相关话题

  最后放弃研究数学的人,是对数学失去兴趣了,还是找不到教职被迫放弃了? 
  为什么部分大一学生认为线性代数听不懂? 
  大佬们这个题怎么证呀? 
  不同国家和制度的数学PhD成才率(永久学术职位)是多少?有多大差别? 
  如何看待 2021 年 USNews 排名数学学科曲阜师范大学超越北大排名第一,山东科技大学排名第三? 
  是否所有简单闭曲线都同胚与圆周? 
  如何用初等方法证明k阶齐次线性常系数递推数列的通项公式? 
  如何证明dimQ(R)=dimQ(C)? 
  我今年 14 岁,想了一个数学思路,把数学各领域的联系写出来了,这个思路有什么问题吗? 
  奥赛生做高考题是种怎样的体验? 

前一个讨论
是否存在f: [0,1]→R+, 使得f在[0,1]的黎曼积分为0?
下一个讨论
一道多元微积分题目?感觉是有限集怎么证明?





© 2025-04-04 - tinynew.org. All Rights Reserved.
© 2025-04-04 - tinynew.org. 保留所有权利