百科问答小站 logo
百科问答小站 font logo



阿贝尔变换强大在哪里? 第1页

  

user avatar   yangshusen96 网友的相关建议: 
      

请你回忆数列极限的乘法运算法则的证明,即设 是数列, 证明 我们会用到一个很重要的结论是

接下来只需利用 的有界性和 的极限即可。

这个结论看上去技巧性很强,实际上就是 Abel 变换的简单特例,只不过它的项数只有

利用 Abel 变换,可以证明很多涉及到乘积的求和的问题,因为它可以将乘积的求和表示为求和的乘积。例如级数收敛的 Abel 判别法,即若级数 收敛,数列 单调有界,则 收敛。证明的关键步骤是利用当 时

得到

另外还有积分第二中值定理。设 是 上的可积函数, 单调,则存在 使得

在很多地方只给出了当 可微且 连续时的证明过程,然而这个定理只需要可积就可以成立。在这种较弱的条件下,不得不用到定积分的定义,从而出现 Abel 变换。


user avatar   travorlzh 网友的相关建议: 
      

阿贝尔变换是RS积分的基石:

先推导一遍阿贝尔变换:

现在我们考虑[a,b]上的连续函数f和有界变差函数g某一区间上的划分 ,则有:

而当 时,我们就得到了分部积分公式:

由于g是有界变差函数,我们就能将此类积分用于研究数论。比如假设我们定义素数计数函数为:

和zeta函数 ,则有:

而这一切漂亮的结论都基于数分里的阿贝尔变换。




  

相关话题

  复合映射的符号f°g是怎么来的? 
  不定积分∫dx/(2 + sinx)在x = π+2kπ处,为何会这样?这是不定积分的某种“特性”吗? 
  为什么left adjoint的存在性和comma category有关? 
  如何证明下面这个式子 ? 
  请问假设检验(hypothesis testing)的意义到底是什么,它的原理是什么样的? 
  方程 x³+y³+z³=33 是否存在整数解? 
  穷人里出来的学霸和富人里出来的学霸有什么相同点和不同点? 
  为什么对于任意的α,∫(1,+∞)x^α*e^-xdx都收敛? 
  微软的计算器为什么输入 ln 2 是先输入 2 再输入 ln? 
  如何解决下列的数列问题? 

前一个讨论
如何直观地理解阿贝尔变换恒等式?
下一个讨论
为什么说连续映射是一个拓扑概念??





© 2025-05-07 - tinynew.org. All Rights Reserved.
© 2025-05-07 - tinynew.org. 保留所有权利