百科问答小站 logo
百科问答小站 font logo



阿贝尔变换强大在哪里? 第1页

  

user avatar   yangshusen96 网友的相关建议: 
      

请你回忆数列极限的乘法运算法则的证明,即设 是数列, 证明 我们会用到一个很重要的结论是

接下来只需利用 的有界性和 的极限即可。

这个结论看上去技巧性很强,实际上就是 Abel 变换的简单特例,只不过它的项数只有

利用 Abel 变换,可以证明很多涉及到乘积的求和的问题,因为它可以将乘积的求和表示为求和的乘积。例如级数收敛的 Abel 判别法,即若级数 收敛,数列 单调有界,则 收敛。证明的关键步骤是利用当 时

得到

另外还有积分第二中值定理。设 是 上的可积函数, 单调,则存在 使得

在很多地方只给出了当 可微且 连续时的证明过程,然而这个定理只需要可积就可以成立。在这种较弱的条件下,不得不用到定积分的定义,从而出现 Abel 变换。


user avatar   travorlzh 网友的相关建议: 
      

阿贝尔变换是RS积分的基石:

先推导一遍阿贝尔变换:

现在我们考虑[a,b]上的连续函数f和有界变差函数g某一区间上的划分 ,则有:

而当 时,我们就得到了分部积分公式:

由于g是有界变差函数,我们就能将此类积分用于研究数论。比如假设我们定义素数计数函数为:

和zeta函数 ,则有:

而这一切漂亮的结论都基于数分里的阿贝尔变换。




  

相关话题

  这个不等式如何证明呢 ? 
  经济类问题可以用逻辑来解释吗? 
  请问(sinx)^3怎么用幂级数展开? 
  我学习数学的时候做总会停止思考,脑子转不过来,连简单的例题都看不懂,是怎么回事?? 
  如何通俗地解释混沌理论(chaos)和分岔理论(bifurcation)? 
  123456789怎样运算等于1? 
  数值分析中割线法的收敛阶是如何证明的? 
  对任意无理数,都存在有理数列趋近于这个无理数,为什么,怎么找这个有理数列? 
  这个的必要性怎么证明? 
  学习经济要达到怎样的数学水平? 

前一个讨论
如何直观地理解阿贝尔变换恒等式?
下一个讨论
为什么说连续映射是一个拓扑概念??





© 2025-05-28 - tinynew.org. All Rights Reserved.
© 2025-05-28 - tinynew.org. 保留所有权利