百科问答小站 logo
百科问答小站 font logo



如图,这个二元函数的界怎么估算? 第1页

  

user avatar   the-areas 网友的相关建议: 
      

令 , ,那么 , 。我们知道 在正方形 的四顶点函数值之和为0,想证明在正方形上 。由Lagrange中值定理有
(注意上面涉及的线段都在正方形内)。四式相加得

因此 。

编辑:这个方法高维推广会遇到困难,因为,比如三维的情况,这样换元就会把正方体变成正八面体,就无法套用中值定理了。还需要更好的方法。


user avatar   liu-yang-zhou-23 网友的相关建议: 
      

不妨设

设线段(弧长参数)

满足

考虑一元函数 ,其导数为

于是由 中值定理

将四个式子叠加

将这两个估计代入

则取一列 列收敛到点 ,由函数的连续性、极限的保号性可知上面的不等式依然成立。


这个证明得到的上界介于

以后有机会再改进改进吧……

所以将这个结论推广到多元函数,函数最大绝对值至少由上界

控制,其中 表示 维闭单位立方体内一点,到各个顶点距离。这个最大值在项点处取得,证略。

利用 求和得到上式右边的粗略估计:




  

相关话题

  数学竞赛和物理竞赛的强度差距有多大? 
  这个求极限的积分咋做? 
  如何反驳如下说法: 1不是无穷大,且若正整数n不是无穷大,则n+1不是无穷大,所以无穷大不存在? 
  1+2+3+4+…n和∫ xdx (X从1到n)之间的关系是什么? 
  一竖直旋转圆柱上连接一均质柔软有限长绳,稳定时绳是什么形状? 
  请问此题如何做,请尽量用多种方法求极限?谢谢。? 
  收敛的序列是否存在单调的子序列(不要求严格单调)? 
  怎么证明这个积分不等式? 
  全体质数的倒数和是发散的还是收敛的?如果收敛,收敛到多少?(多重问题预警)? 
  这道定积分怎么算(据说是某211期末考试题)? 

前一个讨论
这个数列问题困扰我一段时间,大佬有没有好的方法呢?
下一个讨论
常微分方程解对初值的连续依赖性,书上都是定理证明,能否举个最简的方程来说明下,它的解是怎么依赖初值的?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利