百科问答小站 logo
百科问答小站 font logo



请问这道求和极限题应该怎么处理? 第1页

  

user avatar   wei-33-84 网友的相关建议: 
      

谢邀,本人数学水平较差,强行答题一波,望能抛砖引玉。

我个人觉得这道题还是很复杂的,不知道知乎上的大佬们能不能给出简洁而完美的解法。

在这里,我先给出我的解题(或者很可能是伪证)的整个过程。我的整个方法肯定有很多不严谨的地方,希望各位大佬能够一一指正,或者给出真正正确的解法。


之前,有一个回答用正项级数证明了答案是0,应该是有问题的。可以用截取区间进行放缩的方法证明极限必然大于0。如果各位愿意一看,可以参考我之前回答的夹逼方法。

总之,由上述方法,我们最终得到:


然后,我使用了MATLAB进行运算求解n = 10000的情况

是运算结果,大约为0.22064,发现 , 就是 ,其结果趋于0。经过数次不同 的求解后,图像如下:


于是提出猜想:


引理1:

由夹逼定理,


引理2:

命题: ,也就是说,正整数对 的余数在区间 上是近似服从均匀分布的。

证明:由于 是无理数,因而 使得 。

于是,我们不妨将所有正整数 以 坐标放入极坐标系中。此时,对于 且 ,我们能够在某个特定的极大的尺度 上看到正整数的分布在 个曲率非常小的旋臂 上。具体的过程和原因可以参照3Blue1Brown大佬的可视化分析。

因此,当 时, ,这时,我们会发现,旋臂的数量 ,同时,旋臂的曲率 。也就是说,自然数近似分布在以极点为中心的各向均匀分布的无数条射线上。因此,自然数对 的余数是均匀分布的。

进而,自然数对 的余数在 上近似服从均匀分布。概率密度近似为


由此,有推论:


证明:将正整数分类为 组,其中第 组所有元素 ,那么当 时, ,每组元素与极坐标中的每条直线是一一对应的关系。从而:

这样分类后,对内部每一项应用Stolz定理:

进而,原式可化为:




证明思路:同上,将正整数分类为 组,其中第 组所有元素 ,那么当 时, ,每组元素与极坐标中的每条直线是一一对应的关系。从而:

这样分类后,对内部每一项应用Stolz定理,此时,当 时,每一组元素中 :

进而,原式可化为:


若有 ,则
证明:
任取 ,则
因而:

猜想 的证明:


最后,我还是说明一下,以上证明必定存在很多严谨性问题以及说理含糊不清,甚至可能是伪证。希望大家能够交流指正,互相进步!




  

相关话题

  是否存在有源有旋场,不是说有旋必定无源? 
  非常硬核的数学题,大家能否解出? 
  如何评价这个人自称初一自学高等数学并秀优越? 
  如何解出这个定积分? 
  对于所有的无穷小,能否把它们趋于0的速度定义为一个数,使得趋于0速度较小的一定是较低阶的无穷小? 
  为什么有些函数经过二次求导后又回到了原函数? 
  有没有什么适合计算机计算超长位数圆周率的无穷级数? 
  极坐标下的二重积分,二次积分下每次积分的几何意义是什么? 
  高数 泰勒公式该如何理解? 
  请问第五题的导数怎么求,老是求不出? 

前一个讨论
如何看待 2020 奥数国家队名单:时隔十年再有女生入选,5 位选手来自南方高中?
下一个讨论
我觉得整个世界都是假的,物质,感情,都是不存在的。认为他们都是虚拟的,怎么办?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利