百科问答小站 logo
百科问答小站 font logo



如何看待几何数论(geometry of numbers)这一数论分支? 第1页

  

user avatar   li-xiang-1-48 网友的相关建议: 
      

众所周知,无理数可以用有理数无限逼近,但是当有理数的分母有限的时候,对无理数的逼近程度也是有限的。这个逼近的程度,就可以用来衡量无理数“无理的程度”。这就是丢番图逼近理论研究的主要内容。

对于实数 ,定义其无理测度(irrationality measure)

有理数的无理测度为1,无理数的无理测度至少为2. 几乎所有(在勒贝格测度的意义下)实数的无理测度都是2,但计算一个具体的无理数的无理测度往往是极其困难的。

上世纪七十年代,Roth证明了以下绝非平凡的Roth定理:无理代数数的无理测度为2.

对于超越数来说,大多数结果是未知的。例如,对于圆周率,我们的最好结果是已经知道

不难证明,任何 都是某个无理数的无理测度。刘维尔数是指无理测度为无穷大的数,这类数也是最早被证明为超越数的数。

研究无理数 的无理测度的基本方法,大致上可以分为“做算术”和“做分析”两个步骤

“做算术”是指通过某种特殊形式的级数或积分,经常是有理函数或含有有理函数因子的函数的级数或积分,得到形如 的数列,其中 都是有理数,并且通过这级数或积分的性质得知 的公分母不超过某个数列 ;

“做分析”是指通过研究上述级数或积分的分析性质,给出以下形式的不等式(设 ):

进而得到

只要能够估计出 而且 就有

同样的方法还可以用在证明某个数是无理数上。只要我们能够证明 且 那么当 为有理数时,就有 且极限为0, 但对于整数列 ,这是不可能的,所以 是无理数。


以上是我了解的一些内容,仅仅是几何数论的冰山一角,感谢阅读。




  

相关话题

  怎样利用格理论,也就是 minkowski 基本定理来证明拉格朗日四平方和定理以及费马平方和定理? 
  为什么需要证明「1+1=2」? 
  R^2 与 C 的区别在哪里?为什么有数学家认为复数用 a+bi 表示不好? 
  是否存在一个比复数更大的数域,使得任意五次方程都有根式解? 
  是否存在一个复解析函数f(z),使得对于正整数n,f(n)就是第n个质数? 
  i 的平方为什么等于 -1? 
  请问费马大定理写成方程形式是否可以证明? 
  可不可以将所有无理数全都用 有理数·π 来表示? 
  如何将cos(nx)写成cosx的形式多项式? 
  极坐标表示 5000 到 50000 之间的素数为什么会形成一条螺旋线? 

前一个讨论
你身边有“卧槽”都不轻易说,用语极度文明的朋友嘛?
下一个讨论
2020年你有哪些看好的五倍币,十倍币,百倍币,千倍币?





© 2025-05-17 - tinynew.org. All Rights Reserved.
© 2025-05-17 - tinynew.org. 保留所有权利