百科问答小站 logo
百科问答小站 font logo



数论问题困难性的根源是什么? 第1页

  

user avatar   yuhang-liu-34 网友的相关建议: 
      

谢邀。

并不是数论相比其他数学分支更困难,主要是 表述比较初等、不涉及抽象概念的 未解决难题,大部分分布在数论或者组合数学这样的分支里。而且人天然会把目光聚焦在 未解决的难题 上面。像 二次互反律,或者四平方和定理 这种“不那么难”的数论问题,因为在200年前就被大数学家们用比较初等的方法解决掉,从而几乎丧失掉了作为难题的尊严。众所周知,数论是数学中最为古老的分支之一,经过两千年来百代数学家们层层筛选后仍然没有被解决的问题,它当然会是难题。一个更有意义的问题或许是:“为什么数论领域能够源源不断地生产难题?”

不过这种问题对我来说也不难理解。因为不只是数论,几乎所有还活跃的数学研究领域,要造难题简直太容易了。就拿微分几何来说吧,Einstein度量是比较核心的几何对象之一。三维及以下的Einstein度量是平凡的常曲率空间;然而就在第一个不平凡的维度,4维Einstein流形,它的分类就是一个难得令人发指的问题。即使对最简单的4维闭流形—— ,如果你能分类它上面所有Einstein度量,你基本有望拿Veblen几何奖,甚至是菲尔兹奖。即使是对限制性强得多的Kahler-Einstein度量,其在4维(复2维)的分类问题也是高度非平凡的问题,在过去20年众多几何分析专家对KE曲面进行了大量研究,取得了一些重要结果(但离完全分类还差得远)。而要完全分类4维实Einstein度量?呵呵,悲观估计未来一个世纪内都没什么希望。

其实“能做出来就能拿菲奖”的数学难题,在各大数学领域简直成千上万,似乎给人很多机会,然而做不动就是做不动。有时候不禁感叹人类对数学的认识是多么匮乏,很多理论最简单的情形都是一个个大猜想。——比如Langlands纲领似乎只做到GL(2)的情形?这也算是数论相关,数论问题可不都是像哥猜那样平易近人。。这种无力感,绝不仅仅在数论领域存在,在所有活跃数学分支,以及数学以外,只要在研究前沿,都能感受到“未知的深渊”。




  

相关话题

  矩阵思维是什么意思? 
  如何评价2021年丘赛分析试题? 
  为什么正态分布公式中会有 π 呢? π 为什么应用得地方那么多,应该怎么理解 π ? 
  为什么做数学题时,自己想不出来,而翻到后面看答案解析时却全都能能看懂? 
  证明在方程 20X^2-19Y^2=2019 中X与Y没有整数解? 
  请业内人士聊聊韦东奕现在的科研状况,能不能获得菲尔兹奖? 
  相对论刚提出时,号称全球能完全理解的人不超过十人,现在却成为理工科必修课程,是我们智商提高了吗? 
  对于 3 和 4 之间的整数 Bleem,你怎么看? 
  为什么 AI 理解不了逻辑问题? 
  如何求函数 f(x) = sinx + sin2x + sin3x 的值域? 

前一个讨论
为什么网上有这么多小编剧主动收徒?
下一个讨论
现在在东京某中坚私立假面浪人,现在一般入试合格了同志社,请问退学和入学以及之后还要去入管办什么手续?





© 2025-06-06 - tinynew.org. All Rights Reserved.
© 2025-06-06 - tinynew.org. 保留所有权利