百科问答小站 logo
百科问答小站 font logo



数论问题困难性的根源是什么? 第1页

  

user avatar   yuhang-liu-34 网友的相关建议: 
      

谢邀。

并不是数论相比其他数学分支更困难,主要是 表述比较初等、不涉及抽象概念的 未解决难题,大部分分布在数论或者组合数学这样的分支里。而且人天然会把目光聚焦在 未解决的难题 上面。像 二次互反律,或者四平方和定理 这种“不那么难”的数论问题,因为在200年前就被大数学家们用比较初等的方法解决掉,从而几乎丧失掉了作为难题的尊严。众所周知,数论是数学中最为古老的分支之一,经过两千年来百代数学家们层层筛选后仍然没有被解决的问题,它当然会是难题。一个更有意义的问题或许是:“为什么数论领域能够源源不断地生产难题?”

不过这种问题对我来说也不难理解。因为不只是数论,几乎所有还活跃的数学研究领域,要造难题简直太容易了。就拿微分几何来说吧,Einstein度量是比较核心的几何对象之一。三维及以下的Einstein度量是平凡的常曲率空间;然而就在第一个不平凡的维度,4维Einstein流形,它的分类就是一个难得令人发指的问题。即使对最简单的4维闭流形—— ,如果你能分类它上面所有Einstein度量,你基本有望拿Veblen几何奖,甚至是菲尔兹奖。即使是对限制性强得多的Kahler-Einstein度量,其在4维(复2维)的分类问题也是高度非平凡的问题,在过去20年众多几何分析专家对KE曲面进行了大量研究,取得了一些重要结果(但离完全分类还差得远)。而要完全分类4维实Einstein度量?呵呵,悲观估计未来一个世纪内都没什么希望。

其实“能做出来就能拿菲奖”的数学难题,在各大数学领域简直成千上万,似乎给人很多机会,然而做不动就是做不动。有时候不禁感叹人类对数学的认识是多么匮乏,很多理论最简单的情形都是一个个大猜想。——比如Langlands纲领似乎只做到GL(2)的情形?这也算是数论相关,数论问题可不都是像哥猜那样平易近人。。这种无力感,绝不仅仅在数论领域存在,在所有活跃数学分支,以及数学以外,只要在研究前沿,都能感受到“未知的深渊”。




  

相关话题

  整体大于部分不对吗?比如自然数与偶数? 
  数学家在知道哥德尔不完备定理后为何还继续研究数学? 
  如何证明 π>3.14? 
  如何证明两个有理数平方和不能为 7? 
  能不能定义一个数 I,与 0 的乘积等于 1? 
  目前最小的级数形式的无穷大是多少? 
  自然数和非负整数有什么区别? 
  今年复活节应该是3月28号,网上怎么都说是4月4号的呢?春分后第一月圆后的第一礼拜天,怎么是4月4号? 
  为什么数学期刊的 IF 普遍不高? 
  如何算出这个求和式子结果等于 (2n)!!/(2n+1)!! ? 

前一个讨论
为什么网上有这么多小编剧主动收徒?
下一个讨论
现在在东京某中坚私立假面浪人,现在一般入试合格了同志社,请问退学和入学以及之后还要去入管办什么手续?





© 2025-01-29 - tinynew.org. All Rights Reserved.
© 2025-01-29 - tinynew.org. 保留所有权利