百科问答小站 logo
百科问答小站 font logo



数论问题困难性的根源是什么? 第1页

  

user avatar   yuhang-liu-34 网友的相关建议: 
      

谢邀。

并不是数论相比其他数学分支更困难,主要是 表述比较初等、不涉及抽象概念的 未解决难题,大部分分布在数论或者组合数学这样的分支里。而且人天然会把目光聚焦在 未解决的难题 上面。像 二次互反律,或者四平方和定理 这种“不那么难”的数论问题,因为在200年前就被大数学家们用比较初等的方法解决掉,从而几乎丧失掉了作为难题的尊严。众所周知,数论是数学中最为古老的分支之一,经过两千年来百代数学家们层层筛选后仍然没有被解决的问题,它当然会是难题。一个更有意义的问题或许是:“为什么数论领域能够源源不断地生产难题?”

不过这种问题对我来说也不难理解。因为不只是数论,几乎所有还活跃的数学研究领域,要造难题简直太容易了。就拿微分几何来说吧,Einstein度量是比较核心的几何对象之一。三维及以下的Einstein度量是平凡的常曲率空间;然而就在第一个不平凡的维度,4维Einstein流形,它的分类就是一个难得令人发指的问题。即使对最简单的4维闭流形—— ,如果你能分类它上面所有Einstein度量,你基本有望拿Veblen几何奖,甚至是菲尔兹奖。即使是对限制性强得多的Kahler-Einstein度量,其在4维(复2维)的分类问题也是高度非平凡的问题,在过去20年众多几何分析专家对KE曲面进行了大量研究,取得了一些重要结果(但离完全分类还差得远)。而要完全分类4维实Einstein度量?呵呵,悲观估计未来一个世纪内都没什么希望。

其实“能做出来就能拿菲奖”的数学难题,在各大数学领域简直成千上万,似乎给人很多机会,然而做不动就是做不动。有时候不禁感叹人类对数学的认识是多么匮乏,很多理论最简单的情形都是一个个大猜想。——比如Langlands纲领似乎只做到GL(2)的情形?这也算是数论相关,数论问题可不都是像哥猜那样平易近人。。这种无力感,绝不仅仅在数论领域存在,在所有活跃数学分支,以及数学以外,只要在研究前沿,都能感受到“未知的深渊”。




  

相关话题

  如何看待科学网发布文章称「我国数学家证明 NP=P」,是真的吗?如果是,会带来怎样的影响? 
  你都见过什么样的理科盲? 
  从正整数 1~N 中任意取两数 m、n,设 P 为 m/n 可约分的概率,问 N→∞ 时,P为多少? 
  matrix67去哪了? 
  304412这数字是什么意思? 
  如何看待 Atiyah 对六维球面 S^6 上没有复结构的证明? 
  请问这个函数与不等式问题该怎么解答? 
  二维空间的封闭是圆,三维空间的封闭是球,四维空间的封闭是什么? 
  有没有哪些数学猜想是验证到很大的数以后才发现是错的? 
  蜗牛从10米深的井底爬,白天爬一米,晚上下落x米,其中x为[0,2]米的随机数,那么爬上的期望是多少? 

前一个讨论
为什么网上有这么多小编剧主动收徒?
下一个讨论
现在在东京某中坚私立假面浪人,现在一般入试合格了同志社,请问退学和入学以及之后还要去入管办什么手续?





© 2025-06-27 - tinynew.org. All Rights Reserved.
© 2025-06-27 - tinynew.org. 保留所有权利