百科问答小站 logo
百科问答小站 font logo



Weierstrass 逼近定理对任意的完备正交系成立吗? 第1页

  

user avatar    网友的相关建议: 
      

其实仔细看一下三角多项式的正交逼近和L2逼近就会发现,这两个其实完全是两码事。比如说,如果在 上 ,那么L2意义下的逼近是部分和 ,这实际上是L2意义下的最佳逼近,但是一般不是对连续函数的一致逼近,真的需要一致逼近的话我们需要考虑其他的线性组合,比如Cesaro平均。甚至这个部分和都未必是逐点收敛到f的。

因此,如果按照原问题,如果我们有一列完备正交系 ,那么要看一致逼近的话,一定不能考虑 ,而要去考虑 上的逼近,这个时候是不是正交其实不重要。所以这么想这个问题就没啥意思了……

但是还是回答一下吧,顺便科普一下Stone-Weierstrass逼近定理:

设X是紧Hausdorff空间,A是X上实函数的子代数,那么A在一致范数下稠密当且仅当A分离X中的点(任意x,y存在A中的f使得f(x)不等于f(y))并且在每个点上非零(任意x存在A中f使得f(x)非零)。

因此,如果要看一个 是不是稠密的,一般分离点、非零是容易验证的,只需要看这是不是一个代数就够了,也就是对乘法封闭。比如三角函数张成的确实是代数,勒让德多项式也没问题,其他的恐怕未必,自己验证吧。




  

相关话题

  数学和编程中,「函数」的概念相同在哪里,不同在哪里? 
  (纯)数学 phd 的你们和导师 meeting 的时候都聊些什么? 
  这道定积分题目如何解? 
  如何证明一阶导数的上确界的平方小于等于原函数的上确界乘以二阶导数的上确界的二倍? 
  如果一个圆的半径无限大,那它还是一个圆吗? 
  在你不能证明e+π是无理数之前,有人问你这是有理数还是无理数,你选什么(看补充)? 
  为什么你会喜欢数学? 
  问一下大佬这个题怎么想? 
  常听人说「我吃的盐比你吃的米还多」,这真的有可能吗? 
  如果有机会给 1950 年科学界传达一句话,你会选择说什么? 

前一个讨论
文学、艺术评论里所说的「张力」指什么?
下一个讨论
INTP为什么大部分都是“性冷淡”?





© 2025-05-07 - tinynew.org. All Rights Reserved.
© 2025-05-07 - tinynew.org. 保留所有权利