百科问答小站 logo
百科问答小站 font logo



请问贝祖定理(裴蜀定理)除了用辗转相除法还能怎么证? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

答一个吹水题,一般书上都有的。按如下路径证明:

  1. 先证明 是欧几里得整环(有带余除法)。思路:用良序原理(良序原理可以视作 的定义的一部分)
  2. 再证明 是主理想整环。(所有的欧几里得整环都是主理想整环)对于 而言,思路是:首先可以证明 的理想必含有 。如果非平凡,可以证明必含有正数。设最小的正数是 。然后证明所有 都在理想中,再利用带余除法,所有不是 的倍数的都不会在理想中。所以所有理想都是由一个元素生成的,即主理想。)
  3. 最后证明Bezout定理。(主理想整环上都有Bezout定理)思路是:对于 ,考虑 ,它是理想,故一定是主理想,假设由 生成(不妨设 )。去证明 ,并且所有公因子都整除 。这就证明了 。所以 会有整数解,因为



  

相关话题

  概率为1的事件与任何事件独立怎么证明? 
  高中生如何自学相对论和几何? 
  你认为在影响经济发展的各种因素中,有哪些因素是不能用数学的方法,来进行定量的描述和衡量呢? 
  这道定积分题目如何解? 
  Weierstrass 逼近定理对任意的完备正交系成立吗? 
  圆周率 π 应该如何用极限或其它的微积分语言表示?是否可用极限或其它的微积分语言定义圆周率 π ? 
  这种类型的排列有没有什么数学名字? 
  各位积佬们这个积分有什么好的思路吗? 
  无限循环小数的循环节长度是否可以取任意正整数值?如果可以,不同循环节长度的无限循环小数是否均匀分布? 
  三角函数到底是怎么发展来的? 

前一个讨论
设点集B满足,对任给ε>0,都存在可测集A,使得m*(AΔB)<ε,证明B是可测集,还有什么解法?
下一个讨论
如何证明R^2上的不可数集至少在一点附近局部不可数啊?





© 2025-05-21 - tinynew.org. All Rights Reserved.
© 2025-05-21 - tinynew.org. 保留所有权利