百科问答小站 logo
百科问答小站 font logo



过两给定的点平分圆面积的最短曲线是什么? 第1页

  

user avatar   zeng-jia-xi-96 网友的相关建议: 
      

变分法过于暴力了,我们简单一点,用初中几何+等周定理来做

如图,方便起见我们令两定点关于y轴对称且在单位圆上,然后先找到平分面积的圆弧。这里假定 ,对于 的情形易知最短的是直径,对于 由等周定理简单得是内切圆

蓝色弓形的面积为 ,因此红色部分的面积为

用 表示为

由 可以确定 的值,从而确定圆心O的位置。

接下来,我们画出两定点在圆O上对应的劣弧 ,其与单位圆上的劣弧围成一个固定区域(黄色部分),其面积为 ,具体值无关紧要。

现在,假定有一条曲线 过F和F'且平分圆面积,则 和 围成封闭曲线 ,其包围的面积为 等于圆O面积。根据等周定理,其周长必定不小于圆O的周长,从而 的总长必定不小于优弧 的长度;取到等号时 必然是圆,因此最小值点是唯一的。

综上所述,过两给定点且平分圆面积的最短曲线是圆弧(或直径),其圆心位置需要解一个超越方程才能得到。


user avatar   Huxley-84-43 网友的相关建议: 
      

估算一个上界。思路是每一轮都寻求一条最短线段,将当前包含天使的多边形,按面积等分成两个新的子多边形。再假设天使的运气足够好,每次都瞬移到等分效率较低的子多边形。

直观看出,取平行于正三角形一条边的线段来等分其面积,等分效率最高。令此线段长度 ,三角形边长 ,则:

这样,初始正三角形被分成一个新的小正三角形和一个等腰梯形,易见等腰梯形的等分效率远高于新的小正三角形,于是根据假设,天使将瞬移到新的小正三角形当中。如此循环,至于无穷,天使将被锁定在初始正三角形的一个顶点。计算魔鬼走过的耗时路程:

记魔鬼速度 ,则捉住天使的时间:

这个题目如此离散,不借助于数值离散优化不易得到全局最优解,建议大家来改进这个上界吧。


按照 @yyx 说的圆弧线等分正三角形以及后续的扇形,上界可以改进为:




  

相关话题

  如何只通过计算证明“两点之间,线段最短”? 
  为什么不可以使用极限的定义求数列的极限? 
  为什么 sin(x²)+sin(y²)=1 的图像这么复杂? 
  这个数学分析的问题该如何求解? 
  是否存在五个面都为三角形的五面体? 
  围棋存在先手必胜/后手必胜的情况,又是否所有回合制游戏只要算力达到了就一定有先手必胜或者先手必输法则? 
  请问以下轨迹是否为卡西尼卵形线? 
  定义怎么证明这个阶乘极限? 
  从小到大都知道,学习语文是需要有写作能力的,学习数学的时候,也需要写作能力吗?是不是跟写作能力有关? 
  反正切函数arctanx平方后的无穷级数怎么证明? 

前一个讨论
如果爱狗人士穿越到正在屠狗的樊哙面前会作何反应?
下一个讨论
连续函数一定可积吗?





© 2024-11-22 - tinynew.org. All Rights Reserved.
© 2024-11-22 - tinynew.org. 保留所有权利