百科问答小站 logo
百科问答小站 font logo



积分∫[0, +∞] sin(x²)dx 收敛吗? 第1页

  

user avatar   myaries10000 网友的相关建议: 
      

既然已有人用留数算了这个积分,那我就来个更“炫技”的推广

计算积分:

其中

令 ,构造扇形围道:

由于围道内无奇点,所以:

而:

令 ,则 式变为:

即:

所以:


当 时,

便是著名的菲涅尔(Fresnel)积分。


另一种解法参见 @一苇之所如 大佬的文章:


user avatar   tetradecane 网友的相关建议: 
      

这是菲涅耳(Fresnel)积分。我来个“炫技”的求解,使用留数定理。

记 ,规定路径如下:

这里 与我们待求的积分密切相关。

当半径 时,由约当(Jordan)引理知 .

第三段倾角为 ,积分为

其中泊松(Poisson)积分的推理如下:

(直角坐标化为极坐标)

那么

由留数定理知

,顺便得到了 .


user avatar   inversioner 网友的相关建议: 
      

这个叫Fresnel积分。我看到的书上的做法是一个看似震撼我妈但是其实是有背景(参见予一人大佬的回答)的做法。

首先是常规操作,令 ,则 。

我们知道 。对此做点变量替换得到 。从而有

(至于为什么积分号可以交换。。。懒得写了2333)




  

相关话题

  教授留的思考题,请问这个积分怎么求? 
  怎么求sin1°+sin2°+sin3°…+sin90°? 
  这个含定积分的极限怎么算? 
  请问此极限怎么求? 
  这道三重积分怎么换元啊? 
  请问这个极限式如何证明?似乎很像带 δ 函数的积分? 
  是否可以用积分证明球面三角形的面积为 S=A+B+C-π? 
  大佬们,这个结论是怎么来的啊? 
  这个求极限的积分咋做? 
  求大佬帮忙解决,怎么搞出e的? 

前一个讨论
函数求导的逆运算?
下一个讨论
如何证明任何有限域中的任何元素均可写成两数的平方和?





© 2025-04-11 - tinynew.org. All Rights Reserved.
© 2025-04-11 - tinynew.org. 保留所有权利