百科问答小站 logo
百科问答小站 font logo



函数求导的逆运算? 第1页

  

user avatar   shi-zhong-yi-86 网友的相关建议: 
      

事实上,求导(微分)也是一个线性的映射。狭窄一点比如说可以定义在多项式函数的有限维空间上,广泛一点比如说可以定义在 函数的空间上。题主的问题就是要找出微分映射的逆映射,而逆映射并非总是存在的。

举最简单的n次实系数多项式空间为例。这是一个实数域上的(n+1)维线性空间 ,其基底为 。对于微分映射我们甚至可以写出它的变换矩阵。然后通过简单的验证我们可以发现微分映射的kernel是 , 也就是常数求导为零。由此我们可以知道在 上微分映射不是一个单射,当然它的逆更不可能存在了。不过只要我们模掉微分映射的kernel就可以把它变成一个单射,也就是说微分映射在商空间 上是可逆的。

当然如果我们考虑的是其他的域上的多项式比如 ,那么微分映射的kernel又会更大一些。另外对于更一般的无穷可微函数构成的空间不过是把有限维线性空间换成了Hilbert空间。


综上,求导并不总是有逆映射。需要看它是在哪个空间上定义的。




  

相关话题

  为什么两个数的公约数都是他们最大公约数的约数? 
  如何证明 sin(a+b)=sina·cosb+sinb·cosa? 
  g为R→R的函数且g(g(x))=-x^13-x,怎么证明g不可导? 
  2020全国一卷数学考了135分,想要学数学专业,但是特别害怕自己智商不够,学不好,该怎么办? 
  数学上是否存在这样的情况,给定条件已经能确定结果的唯一性,但就是求不出来!据说椭圆周长就是。? 
  孩子的梦想是成为天文学家,怎样帮助他去接近梦想? 
  有没有数学无法覆盖的领域? 
  这个世界到底是离散的还是连续的? 
  如果微积分是中国人发明的,那现在的数学符号会是什么样子? 
  数学书上这种是什么字体,以及应该如何手写? 

前一个讨论
C++中,auto关键字有哪些乱用的情况?平时使用有哪些坑?
下一个讨论
积分∫[0, +∞] sin(x²)dx 收敛吗?





© 2025-06-04 - tinynew.org. All Rights Reserved.
© 2025-06-04 - tinynew.org. 保留所有权利