百科问答小站 logo
百科问答小站 font logo



设有界函数在某一闭区间上的不连续点为{Xn},且极限寻在,证明该函数在这个闭区间可积? 第1页

  

user avatar   inversioner 网友的相关建议: 
      

勒贝格定理啊,不连续点的集合的测度为零。


更初等的做法:

假设我们只知道有有限个不连续点的函数可积。设数列 的极限是 。则不连续点都聚在点 的附近,也就是说,任意取一个点 的邻域,这个邻域之外函数都是可积的。而我们知道函数Riemann可积的判据 。这样我们自然把区间分成三个部分,左右两个可积的部分这个和当然可以任意小,中间不知道的部分只要区间长度很短也可以充分小。这就是解法的思路。




  

相关话题

  这个极限怎么做呢? 
  如何证明如下图所示的积分不等式? 
  如何推导如下积分列极限? 
  如何高贵冷艳地写数学分析证明题? 
  下面这个数列极限如何求出来呢? 
  有哪些让人眼前一亮的函数? 
  有没有处处不可导的凸函数? 
  既然勒贝格积分是黎曼积分的改进,那为什么还要学黎曼积分?淘汰黎曼积分,直接学勒贝格积分不好吗? 
  围棋存在先手必胜/后手必胜的情况,又是否所有回合制游戏只要算力达到了就一定有先手必胜或者先手必输法则? 
  如何评价上海交通大学数学系数学分析证明题都考原题? 

前一个讨论
各位大佬怎么求这道题的极限?
下一个讨论
底下那步怎么转化的啊 是忽略了吗?





© 2025-06-01 - tinynew.org. All Rights Reserved.
© 2025-06-01 - tinynew.org. 保留所有权利