百科问答小站 logo
百科问答小站 font logo



如何证明这个复变函数列的一致收敛性? 第1页

  

user avatar   chu-hai-feng-44 网友的相关建议: 
      

这道题目可以说具有很强的“数学分析”味道,数分中也有类似平行的题目.

由 在 上解析,可知存在 ,使得 在 上解析,连续,从而一致连续. 故对于任意的 ,存在 使得当 时,有

固定 ,对于任意的 ,存在正整数 ,使得当 时,有

故对于上述 ,存在正整数 ,使得当 时,有

从而 在 上一致收敛到 所以 在 内内闭一致收敛.


user avatar   RealFiddie 网友的相关建议: 
      
命题 (1)设为上的全纯函数,在上无零点,证明在内闭一致收敛于.
(2)复变题目做不出来,哭(

证明: (1)由于 全纯,则在 的内闭区域 内,可以展开为幂级数: (其中 )

由Cauchy积分公式,

其中,

因此

这说明

(2)宝宝不哭~

注: 在边界没有零点这个条件可能是多余的,史济怀复变函数里面4.4.8题是要证 与 在单位圆盘内零点个数相等,可能需要用辐角原理,这个就要用到边界无零点的条件.




  

相关话题

  x<|1|为什么等于-1<x<1? 
  中国能否出现世界一流的数学研究机构? 
  如何理解数列极限的定义? 
  实变函数鲁津定理的疑问? 
  已知若干个独立同分布的随机变量之积的分布,如何求单个随机变量的分布? 
  下面的结论是否正确? 
  有哪些没有(或无法)证明却经常被我们使用的结论或定理? 
  定义域为空集的空函数该怎么理解? 
  数学系大二如何弥补大一的差基础? 
  假设我扔一枚硬币,60次有55次正面朝上,我有多大把握认为这枚硬币正面和反面出现概率不相同? 

前一个讨论
如何证明下面的级数收敛?
下一个讨论
你最喜欢的公式/定理是?





© 2025-02-21 - tinynew.org. All Rights Reserved.
© 2025-02-21 - tinynew.org. 保留所有权利