百科问答小站 logo
百科问答小站 font logo



如何证明这个复变函数列的一致收敛性? 第1页

  

user avatar   chu-hai-feng-44 网友的相关建议: 
      

这道题目可以说具有很强的“数学分析”味道,数分中也有类似平行的题目.

由 在 上解析,可知存在 ,使得 在 上解析,连续,从而一致连续. 故对于任意的 ,存在 使得当 时,有

固定 ,对于任意的 ,存在正整数 ,使得当 时,有

故对于上述 ,存在正整数 ,使得当 时,有

从而 在 上一致收敛到 所以 在 内内闭一致收敛.


user avatar   RealFiddie 网友的相关建议: 
      
命题 (1)设为上的全纯函数,在上无零点,证明在内闭一致收敛于.
(2)复变题目做不出来,哭(

证明: (1)由于 全纯,则在 的内闭区域 内,可以展开为幂级数: (其中 )

由Cauchy积分公式,

其中,

因此

这说明

(2)宝宝不哭~

注: 在边界没有零点这个条件可能是多余的,史济怀复变函数里面4.4.8题是要证 与 在单位圆盘内零点个数相等,可能需要用辐角原理,这个就要用到边界无零点的条件.




  

相关话题

  什么情况下被积函数的原函数不能用初等函数表示?怎么判断呢? 
  (a+b)!/(a!b!) 的结果一定是整数吗?如果是,如何证明? 
  为什么美国中小学生学的数学比我们简单,美国人却还能做出超级牛的东西? 
  有一函数F(x),其导数为F`(x),现在它们共同出现在同一等式里,是否能计算出F(x)的表达式? 
  数学论文的作者是怎样排序的? 
  学习数学可以陶冶情操吗? 
  如何评价 V. I. Arnold 的文章《On Teaching Mathematics》? 
  为什么说尾数为1、3、7、9的素数个数是基本相同的? 
  「1 堆麦子 + 1 堆麦子 = 1 堆麦子」这样的例子是否可以用数学语言解释? 
  我这种情况,是否可以从事数学研究? 

前一个讨论
如何证明下面的级数收敛?
下一个讨论
你最喜欢的公式/定理是?





© 2025-04-26 - tinynew.org. All Rights Reserved.
© 2025-04-26 - tinynew.org. 保留所有权利