百科问答小站 logo
百科问答小站 font logo



是否存在一个级数的∑an使得任何其他级数,只要通项大于它的都发散,小于的都收敛? 第1页

  

user avatar   sing_me_a_song 网友的相关建议: 
      

不存在。这里只讨论正项级数,任意项级数不存在比较审敛法。

(du Bois Reymond定理)对于任意一个给定的收敛正项级数 ,一定存在一个收敛正项级数 ,使得 ,反之,(Abel定理)对于任意发散正项级数 ,一定存在发散正项级数 ,使得 。


证明:

考虑收敛正项级数的余项 ,容易知道 单调减趋于0,令 ,记 ,容易验证它满足 ,并且 ,从而找到了需要的 。

同时,对于发散级数 ,可以找 。此时 不言自明。考虑柯西收敛准则证明 发散:

由于 发散,所以对任意n,容易找到一个p,使得 , ,这样就知道它是发散的了。

这说明无论是判断收敛还是判断发散,都不存在一个级数能作为“收敛最快/发散最慢”的标准。

PS,原题问的是数列,我想数列之间判别收敛根本都不需要比值判别法。所以我修改了题目。

如果题主希望问的是通过比值法,用一个数列来判断另一个数列极限是否存在,那这样的题目描述是不合适的。对于比值极限 ,按定义展开即为 ,取合适的 (如 )展开这个式子,在保证 情况下,有 ,这样两边求和才能得到 收敛性与 之间收敛性的关系。至于用它来判别数列的极限是否存在?那显然是没有道理的。


user avatar   liu-yang-zhou-23 网友的相关建议: 
      

很遗憾,没有一个万能的尺子。

如果判断正项级数是否收敛要说有一把尺子的话,从阶的角度讲我想大概也只有:




  

相关话题

  这个定积分如何求解? 
  请问这个极限如何计算? 
  哪些数学命题曾经长期被误认为是正确的,但之后被严格证明是错的? 
  如何烤一块π分熟的牛排? 
  一个关于新的磁场解释的初级模型 3.1(简化为了等待讨论新内容),可以完善吗? 
  这个定积分应该怎么求? 
  行列式等于 0,就一定有两行或两列相等吗? 
  简单光滑道路的不同参数表达 在其上积分是否一定相同? 
  如何评价上海财经大学在多省份滑档后,新生数分一挂科率高达 26%?是生源质量的问题吗? 
  为什么宇宙当中的温度会有上下限? 

前一个讨论
有哪些诗与数学有关?它们的作者又是谁?
下一个讨论
如何利用群论的知识解决三阶魔方?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利