百科问答小站 logo
百科问答小站 font logo



是否存在一个级数的∑an使得任何其他级数,只要通项大于它的都发散,小于的都收敛? 第1页

  

user avatar   sing_me_a_song 网友的相关建议: 
      

不存在。这里只讨论正项级数,任意项级数不存在比较审敛法。

(du Bois Reymond定理)对于任意一个给定的收敛正项级数 ,一定存在一个收敛正项级数 ,使得 ,反之,(Abel定理)对于任意发散正项级数 ,一定存在发散正项级数 ,使得 。


证明:

考虑收敛正项级数的余项 ,容易知道 单调减趋于0,令 ,记 ,容易验证它满足 ,并且 ,从而找到了需要的 。

同时,对于发散级数 ,可以找 。此时 不言自明。考虑柯西收敛准则证明 发散:

由于 发散,所以对任意n,容易找到一个p,使得 , ,这样就知道它是发散的了。

这说明无论是判断收敛还是判断发散,都不存在一个级数能作为“收敛最快/发散最慢”的标准。

PS,原题问的是数列,我想数列之间判别收敛根本都不需要比值判别法。所以我修改了题目。

如果题主希望问的是通过比值法,用一个数列来判断另一个数列极限是否存在,那这样的题目描述是不合适的。对于比值极限 ,按定义展开即为 ,取合适的 (如 )展开这个式子,在保证 情况下,有 ,这样两边求和才能得到 收敛性与 之间收敛性的关系。至于用它来判别数列的极限是否存在?那显然是没有道理的。


user avatar   liu-yang-zhou-23 网友的相关建议: 
      

很遗憾,没有一个万能的尺子。

如果判断正项级数是否收敛要说有一把尺子的话,从阶的角度讲我想大概也只有:




  

相关话题

  初始条件完全相同,期间也没有任何外界干扰的两个系统,发展轨迹会完全相同吗? 
  在哪里排队最有可能中奖? 
  学习高中数学真的有用吗? 
  有哪些不易察觉的错误证明? 
  这个积分可以算吗,怎么算? 
  大一高数完全听不懂怎么办? 
  不定积分∫ dx 中的 d 是什么意思? 
  无穷级数 ∑ n=1 ∞ ∫ 0 π sin^n x dx 是否收敛? 
  不等式e^x>1+x x≠0怎么证明? 
  如何简洁地证明二次互反律?有哪些具体应用? 

前一个讨论
有哪些诗与数学有关?它们的作者又是谁?
下一个讨论
如何利用群论的知识解决三阶魔方?





© 2025-05-16 - tinynew.org. All Rights Reserved.
© 2025-05-16 - tinynew.org. 保留所有权利