百科问答小站 logo
百科问答小站 font logo



像这种积分运算有什么规律吗? 第1页

  

user avatar   lu-yi-50-92 网友的相关建议: 
      

我从直观的一种角度来回答吧。。


一般来说,有理函数都是可以写出初等形式的积分的(虽然会很复杂,但是可以写的出)。一般 上的有理式一般是可以分解成 乘积是有限项)。

然后,就可以拆分成形如 形式的线性组合。(因为它们都有原函数,从而,依照积分的线性组合可以得出结论)

当积分中都是有理式的时候,那是很好的。但是如果出现了根号了,那就不是很好处理了。


譬如说第一张图的题,被积函数是 积分区域是 的区间。

考虑对其进行“有理化”的操作,即 那么,被积函数相当于平面上的一条曲线做积分(原先是在实数轴上)

目前我们有很好的几何模型了,下一步就是,能否找到一条直线到 曲线的有理映射


因为是二次曲线,所以是可以的。因为对于任意一条二次曲线 随意取该曲线上一点 ,然后过该店做二次曲线的切割线,斜率为自由变量,即 带入二次曲线的方程,仅考虑二次和一次项,则有

由Vieta公式,则方程的两个根之和等于 其中一个根由假设 ,另一个根就是二次曲线上的点 ,于是有

同理, 可以由直线方程得到关于 的表达。于是,就存在两个关于k的有理函数


举个例子,譬如说圆的方程 ,它对应的双有理映射就是

对于刚才讨论的问题,对应的双有理就可以是 然后带入原积分就是有理积分了,从而能求出解。


当然,也有三角函数的代换,其实本质上是一回事,如图:

可以思考一下,绿线的斜率与蓝色弧所表示的夹角的三角函数有什么关系??


当然,要是换成了三次曲线,就不一定存在双有理了(甚至解析同胚都木有了),就比如 。当然,要是出现了一些奇点就另说了。。。。。


上述所提到的一些操作和思路来源于沙法列维奇的代数几何(都是一些古典的数学技巧了。。。。




  

相关话题

  如何在数学试卷上调戏阅卷人? 
  复变函数中多值函数的黎曼面是不是不唯一? 
  应该如何求解该广义积分? 
  请问这道定积分的题目怎么写? 
  如何证明求导是线性变换? 
  什么情况下比值判别法失效? 
  这个含定积分的极限怎么算? 
  数学这种东西也许有用,但是,如何在现实生活当中用到它? 
  如何评价张景中《不用极限的微积分》? 
  为什么在数学中,一些运算的逆运算比原运算难很多? 

前一个讨论
如何证明紧致的度量空间都是第二可数空间?
下一个讨论
如何证明环面T2不能嵌入到球面S2中?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利