百科问答小站 logo
百科问答小站 font logo



像这种积分运算有什么规律吗? 第1页

  

user avatar   lu-yi-50-92 网友的相关建议: 
      

我从直观的一种角度来回答吧。。


一般来说,有理函数都是可以写出初等形式的积分的(虽然会很复杂,但是可以写的出)。一般 上的有理式一般是可以分解成 乘积是有限项)。

然后,就可以拆分成形如 形式的线性组合。(因为它们都有原函数,从而,依照积分的线性组合可以得出结论)

当积分中都是有理式的时候,那是很好的。但是如果出现了根号了,那就不是很好处理了。


譬如说第一张图的题,被积函数是 积分区域是 的区间。

考虑对其进行“有理化”的操作,即 那么,被积函数相当于平面上的一条曲线做积分(原先是在实数轴上)

目前我们有很好的几何模型了,下一步就是,能否找到一条直线到 曲线的有理映射


因为是二次曲线,所以是可以的。因为对于任意一条二次曲线 随意取该曲线上一点 ,然后过该店做二次曲线的切割线,斜率为自由变量,即 带入二次曲线的方程,仅考虑二次和一次项,则有

由Vieta公式,则方程的两个根之和等于 其中一个根由假设 ,另一个根就是二次曲线上的点 ,于是有

同理, 可以由直线方程得到关于 的表达。于是,就存在两个关于k的有理函数


举个例子,譬如说圆的方程 ,它对应的双有理映射就是

对于刚才讨论的问题,对应的双有理就可以是 然后带入原积分就是有理积分了,从而能求出解。


当然,也有三角函数的代换,其实本质上是一回事,如图:

可以思考一下,绿线的斜率与蓝色弧所表示的夹角的三角函数有什么关系??


当然,要是换成了三次曲线,就不一定存在双有理了(甚至解析同胚都木有了),就比如 。当然,要是出现了一些奇点就另说了。。。。。


上述所提到的一些操作和思路来源于沙法列维奇的代数几何(都是一些古典的数学技巧了。。。。




  

相关话题

  这个能用留数做吗? 
  怎么理解微分和积分?它们有何关系? 
  这道三重积分怎么换元啊? 
  为什么微积分那么难学? 
  为什么说连续映射是一个拓扑概念?? 
  以下极限是否存在? 
  是否存在一个级数的∑an使得任何其他级数,只要通项大于它的都发散,小于的都收敛? 
  为什么有些学生物理很强,高中就自学微积分和大学物理,而大多数学生却不能?怎么能达到有些学生的高度呢? 
  π可能等于4吗 ? 
  如何证明封闭曲线面积的参数积分公式? 

前一个讨论
如何证明紧致的度量空间都是第二可数空间?
下一个讨论
如何证明环面T2不能嵌入到球面S2中?





© 2024-11-09 - tinynew.org. All Rights Reserved.
© 2024-11-09 - tinynew.org. 保留所有权利