百科问答小站 logo
百科问答小站 font logo



数列「1,2,2,3,3,3,...」的通项公式是什么? 第1页

  

user avatar   yang-di-di-62 网友的相关建议: 
      

写一个零基础就能看懂的推导过程,主要给我的学生看。大神可以跳到最后。

看到这个问题首先想到的是 向下取整函数。

这个运算在美国高中的algebra2里会学,很多国际数学竞赛也会讲到,英文名叫greatest integer function:The greatest integer less than or equal to x.

举个例子 , ,

如果

那为什么向下取整函数可以帮助我们找到这个数列的通项公式?

比如说一个数列是{1,2, 2.5, 3, 3.7, 3.9,}, 我对所有元素都向下取整就可以得到{1,2,2,3,3,3}了!

这样一来问题就很简单了。

我只需要找到一个连续的增函数(continuous increasing function )f(n),让它满足

当n=1的时候,f(n)=1

当n=2的时候,f(n)=2,

当n=4的时候,f(n)=3

当n=7的时候,f(n)=4

...

那n=3,5,6的时候怎么办?

由于f(n)是个增函数,所以当n=3的时候,2<f(n)<3,再通过取整函数 就可以再得到一个2. 同样的道理, ,直到f(7)=4又开始4的循环。

好了,那f(n)怎么找呢?怎么样把{1,2,4,7...}给映射到{1,2,3,4...}上去?

注意到我们上面提到的{1,2,4,7...}本身是个二次数列。所以这里如果我们先找f(n)的反函数 ,再求解f(n)就简单多了! 这边再回顾一下f(n)的定义是输入一个位置,输出一个数值,也就是通项公式的本质。 那么 就是输入一个数值,得到一个位置。

n=1,

n=2,

n=3,

n=4,

...

这里可以用二次数列的公式求解得到 ,如果不会二次数列,我们可以稍微想想自己推理一下:

第一个1出现在n=1的位置。

第一个2出现之前已经有了一个1,所以第一个2出现在n=2的位置。

第一个3出现之前已经有了一个1两个2,所以第一个3出现在n=1+2+1的位置。

第一个4出现之前已经有了一个1两个2三个3,所以第一个4出现在n=1+2+3+1的位置。

第一个n出现之前已经有了一个1两个2三个3四个4...,所以第一个n出现在n=1+2+3+...(n-1)+1的位置上。

也就是说 的值等于{1,2,3,4,5...}的前n-1项的和再加上1。 用等差数列求和公式可以得到:

=(1+(n-1))×(n-1)/2+1,化简之后就是(2-n+n²)/2.



好了,现在找有了 我们可以把f(n)算出来啦。

验算一下,

当n=1的时候,f(n)=1.

当n=2的时候,f(n)=2

当n=3的时候, f(n)=2.561553...

当n=4的时候,f(n)=3

当n=5的时候,f(n)=3.372281...

当n=6的时候,f(n)=3.701562...

当n=7的时候,f(n)=4

...

注意到只有当n=1,2,4,7...的时候f(n)才是整数,而中间得到的那些无理数向下取整之后又可以得到这一阶段的整数。

那么最终数列{1,2,2,3,3,3,4,4,4,4,...}的通项公式就是


user avatar   stephen-lostman 网友的相关建议: 
      

首先,我们不妨把题目理解为,数列中为连续n项n的列举,即数列的第项到第项都是n,这样更符合大多数人的认知。

我们可以考虑将第项找出一个单调递增的函数(二次函数的反函数)插值,然后第项到第项就必然介于n和n+1之间,故可以用高斯函数来解决。

求出在的反函数,用初中学过的求根公式即可:

故数列通项公式为。

在excel上试一下:

看起来是没问题的。


user avatar   plel 网友的相关建议: 
      

我来一个不一样的答案吧,这个答案我相信在OEIS上也搜不到。搜索圆周率小数点后的数字发现:第一次出现"122333"是在小数点后第2103717位到第2103722位。

于是数列的通项公式可以写成

其中符号 和 分别代表 的整数部分和小数部分。

证明:数列的第 项是圆周率 的小数点后第 位,也就是 的小数点后第一位,而小数点后第一位又等于 的整数部分,得证。

此数列在1,2,2,3,3,3之后的项是2,4,1,9,4,7,0,0,……


用类似的方法考虑自然常数 无理数 黄金分割率 欧拉-马斯克若尼常数 和阿培里常数

那么数列1,2,2,3,3,3……的通项公式分别是


user avatar   Huxley-84-43 网友的相关建议: 
      

估算一个上界。思路是每一轮都寻求一条最短线段,将当前包含天使的多边形,按面积等分成两个新的子多边形。再假设天使的运气足够好,每次都瞬移到等分效率较低的子多边形。

直观看出,取平行于正三角形一条边的线段来等分其面积,等分效率最高。令此线段长度 ,三角形边长 ,则:

这样,初始正三角形被分成一个新的小正三角形和一个等腰梯形,易见等腰梯形的等分效率远高于新的小正三角形,于是根据假设,天使将瞬移到新的小正三角形当中。如此循环,至于无穷,天使将被锁定在初始正三角形的一个顶点。计算魔鬼走过的耗时路程:

记魔鬼速度 ,则捉住天使的时间:

这个题目如此离散,不借助于数值离散优化不易得到全局最优解,建议大家来改进这个上界吧。


按照 @yyx 说的圆弧线等分正三角形以及后续的扇形,上界可以改进为:




  

相关话题

  学习计算几何是什么样的体验? 
  数学界如何评价陈景润? 
  能分享一道如果“注意不到”就出不来的数学题吗? 
  如何计算 sqrt(tan x) 在 0 到 π/2 的定积分? 
  「罗素悖论」的提出给数学界带来何种影响,如何通俗地理解这一悖论? 
  各位 求问这个二重积分怎么算出来的? 
  如何证明数列sinn^2发散? 
  如何证明 ln^2(x+1)>ln(x)·ln(x+2)? 
  高等数学中的希腊字母你们都是如何书写的? 
  数学上一共有多少维度? 

前一个讨论
既然谭浩强的c语言教材那么烂,那么应该选择什么书作为c语言教材?
下一个讨论
是不是大部分麻醉医生都很讨厌妇科手术?





© 2024-11-23 - tinynew.org. All Rights Reserved.
© 2024-11-23 - tinynew.org. 保留所有权利