百科问答小站 logo
百科问答小站 font logo



3,13,1113,3113,2321,221311,223113,222321,下一个数是什么? 第1页

  

user avatar   knowone-33 网友的相关建议: 
      

114514.

是多项式

在 取 时的值.


居然这么多赞...看起来找规律填数这一类蛮不讲理的题目已经人神共愤了啊(逃


user avatar   he-dong-zhou-yang-dian-yang-yan-hua-dian-sheng 网友的相关建议: 
      

3,13,1113,3113,2321,221311,223113,222321,问下一个数?

答:421311

附加:继续:14123113,41141223,24312213,32142321,23322114,32232114,(23322114,32232114循环)

注:3113,汇总3,有2个3,故下一个数为2321。

3,13,1113,3113,2321,221311,223113,222321,421311,14123113,41141223,24312213,32142321,23322114,32232114,(23322114,32232114循环)


参考 Lloyd Bannings 的回答:

Lloyd Bannings 答 3,13,1113,3113,2321,221311,223113,222321,下一个数是什么?

中 给出 oeis.org/A112513/list

给出了这个数列的纵向列表形式,利于查看。


也可以访问:或 oeis.org/A112513

3,13,1113,3113,2321,221311,223113,222321



另例:

1,11,21,1211,3112,132112,311322,232122,421311,14123113,41141223,24312213,32142321,23322114,32232114,(23322114,32232114循环)


2,12,1112,3112,132112,311322,232122,421311,14123113,41141223,24312213,32142321,23322114,32232114,(23322114,32232114循环)


4,14,1114,3114,132114,31131214,23411214,22132431,32212314,23322114,32232114,(23322114,32232114循环)

5,15,1115,3115,132115,31131215,23411215,2213143115,2241231415,3224311315,3322143115,3322311415,(3322311415循环)

6,16,1116,3116,132116,31131216,23411216,2213143116,2241231416,3224311316,3322143116,3322311416, (3322311416循环)

...

以上写于2021-12-10

补充:

oeis.org/search?


以上各数列在oeis在线数列网站均可找到:

1,11,21,1211,3112,132112,311322,232122,421311,14123113


2,12,1112,3112,132112,311322,232122,421311,14123113,41141223,24312213,32142321,23322114,32232114


4,14,1114,3114,132114,31131214,23411214,22132431,32212314,23322114,32232114


5,15,1115,3115,132115,31131215,23411215,2213143115,2241231415,3224311315,3322143115,3322311415



6,16,1116,3116,132116,31131216,23411216,2213143116,2241231416,3224311316,3322143116,3322311416 - OEIS


12月17日补充:

有一种序列相似于本题所问的序列,而又不同于本题所问的序列,这种序列被称为“外观序列”或“外观数列” (Look-and-Say Sequence,外观描述数列),如下:

1,11,21,1211,111221,312211,13112221,1113213211,31131211131221,13211311123113112211,...

参见:


外观数列是康威的数学小发明,详见:

外观数列_百度百科

数学大“玩”家—— 纪念 约翰·霍顿·康威 以及康威的“外观数列” (音频讲稿)

注:英国数学家,约翰·霍顿·康威 (John Horton Conway, 1937.12.26 ——2020.4.11)因新冠肺炎于2020年4月11日,在位于美国新泽西州普林斯顿大学附近的家中去世,享年82岁。


类似有

3,13,1113,3113,132113,1113122113,311311222113,13211321322113,1113122113121113222113,31131122211311123113322113,...

2,12,1112,3112,132112,1113122112,311311222112,...

...

22,22,(22循环)

...

4,14,1114,3114,132114,1113122114,311311222114,13211321322114,1113122113121113222114,311322211311123113322114,1321133221134112132123222114,...




  

相关话题

  所有质数的倒数的平方和的精确值是多少? 
  关于p进数域? 
  为什么计算圆的周长与面积、球的表面积与体积,使用的都是 π,而不是三个不同的数?是偶然还是必然? 
  比0.000······1更小的非0数,是什么? 
  如果打算证明黎曼猜想,请问从大一开始应该做什么数学基础准备? 
  如何用简单的方法证明「在周长一定时,圆的面积最大」? 
  打开概率为 1/8000 的保险箱,8000 次内一定能打开吗? 
  如何证明两个有理数平方和不能为 7? 
  能不能出一道很难的数学题,答案是 235,宿舍当门牌用? 
  π可能等于4吗 ? 

前一个讨论
如果让你回到古代,和李白、苏轼、杜甫、白居易一起旅游,你会选择谁?
下一个讨论
如何评价电视剧《大宅门》中的白景琦?





© 2024-11-24 - tinynew.org. All Rights Reserved.
© 2024-11-24 - tinynew.org. 保留所有权利