百科问答小站 logo
百科问答小站 font logo



如何证明下面的整除关系成立? 第1页

  

user avatar   travorlzh 网友的相关建议: 
      

@六院的灵猿 的回答已经非常全了,我们就不妨做一些推广:

事实上,这个问题可以拓展为:

命题: ,即n总是整除 关于h的离散Fourier变换。

证明:经过类似 @六院的灵猿 的变换,可得:

定义拉马努金和 ,则原式变换为:

事实上,拉马努金和满足:

[1]

并且 。因此,我们的命题变成了 :

对于此类问题,我们要化整为零。假设n可以被分解为a、b两个互素数,则:

这意味着 。因此我们只需要考虑证明最简单的情况,即

展开可得:

现在设 则可以分类讨论:

当r=w时:

其中最后一行可以参考 @六院的灵猿 的回答。

当r<w时:

由 可知:

而第二项可以被分解成

由于在a-h>1的情况下 ,我们仅选择 的情况进行求和:

将第一项和第二项的结果回代至(a)式,可得:

综上所述, ,撒花!!

参考

  1. ^当数论遇上分析——拉马努金和与欧拉函数的故事 - 知乎 https://zhuanlan.zhihu.com/p/166530236



  

相关话题

  如何看待《华裔教授发现二次方程「极简」解法:丢掉公式,全球教科书可能都要改了》? 
  20.22.25.30.37.()后边的这个数到底是多少? 
  如何理解哈密顿-凯莱定理? 
  2.什么是赫姆霍兹定理? 
  拉普拉斯变换的物理意义是什么? 
  线性代数里面的矩阵是不是向量?假如是的话,为什么感觉这样的向量和几何里的向量有点不一样? 
  如何理解微分几何中的切空间? 
  如何评价 Michael Francis Atiyah? 
  有哪些只有数学专业领域的人才懂的笑话? 
  为什么尺规不能三等分一个任意角? 

前一个讨论
明天考生竞,女装去会不会很尴尬?
下一个讨论
galgame里的男主与乙女游戏里的男生哪个更符合女生的审美?





© 2025-04-24 - tinynew.org. All Rights Reserved.
© 2025-04-24 - tinynew.org. 保留所有权利