若n是奇数,易知连续的n个整数构成n的一个完全剩余系,将这些整数组合一下,可以构成(n+1)/2个被n整除的整数,记为a_i.
记S_k为a_1到a_k的和,若S_k模(n+1)/2均不同余,则必存在S_k被(n+1)/2整除,又因为n与(n+1)/2互质,因此S_k被n(n+1)/2整除. 若存在S_m和S_n模(n+1)/2同余,m>n,则S_m-S_n被(n+1)/2整除,得证.
若n是偶数,分两种情况:1、这n个连续的整数均不被n+1整除,可以两两组合成n/2个被n+1整除的整数. 2、存在其中一个被n+1整除,拿出这个数,剩下的数仍然可以两两组合成n/2-1个被n+1整除的整数.