百科问答小站 logo
百科问答小站 font logo



是否对于任意的正整数n≥2,都存在n个正整数两两之和为平方数? 第1页

  

user avatar    网友的相关建议: 
      

放一些前两天和佬爷聊这个问题的想法:(不是证明!)(不定期更新

取完全图K(n),把n个正整数放在n个顶点上,每条边标上两个顶点之和,可以把原问题转化成在边上填入什么样的平方数能使得n个顶点有正整数解。(可以再假设解里的n个顶点各不相同,否则有一堆2和一个7的沙雕解。)

命题1:有整数解的必要条件为对任意正整数m和顶点集V,K(n)在每个顶点集V上的m-正则图的所有边上的平方数之和为常数。

证明:每个正则子图关联V的每个点m次,所以这个和恒等于V上所有顶点之和的m倍。

推论2:当n为奇数时,K(n)每条哈密顿回路上的平方数之和恒定;当n为偶数时,K(n)的每个完美配对里的平方数之和恒定。

证明:在命题1中取V为全集,m分别取1和2即可。

命题3:当n≥3时,有整数解的另一个必要条件是n个顶点有至多一个奇数。

证明:考虑反证法。如果有至少两个奇数,那么要么存在两奇一偶的K(3)子图,要么存在全是奇数的K(3)子图。

(1)如果存在两奇一偶的K(3)子图,那么三条边也两奇一偶,三个顶点之和是偶数,所以三条边之和等于三个顶点之和的两倍是4的倍数,和三条边两奇一偶矛盾,无解。

(2)如果存在三个奇数的K(3)子图,那么三条边都是偶数,三个顶点之和是奇数,所以三条边之和等于三个顶点之和的两倍模4余2,和三条边都是偶数矛盾,无解。

命题4:推论2中的条件是K(n)有实数解的充分条件。

证明:不失一般性设n≥3。当n是偶数时,由于每条哈密顿回路都可以拆成两个完全配对,于是每条哈密顿回路的和恒定。解K(3)中顶点关于边的三元一次方程组然后对n归纳可得,K(n)有实数解当且仅当每个顶点v嵌入K(n)的含v子图K(3)时,v的两倍等于两邻边之和减去对边。考虑v嵌入两个不同的K(3),vwx和vw'x',待证vw+vx-wx=vw'+vx'-w'x'。考虑一条K(n)去除顶点v并经过wx和w'x'两边的哈密顿回路,构造两条K(n)的哈密顿回路使得v分别被插入在wx之间和w'x'之间。由于这两条哈密顿回路之和相等,它们与没有插入v的哈密顿回路之差分别等于vw+vx-wx和vw'+vx'-w'x',两者相等。

例子5:考虑完全图K(4)。由命题4,可以考虑K(4)的三个完美配对,解得 23²+24² = 31²+12² = 32²+9²。把这六个平方数填入K(4)的边的时候,由命题3需要保证有一个顶点接入所有奇数的边,解得的四个顶点是(-152,233,296,728),两两之和为完全平方数。

猜想6:当n≥3时,原命题成立。

证明思路:由命题4,假设K(n)满足推论2中条件的 m≥2 个子图每个都有 e≥2 条边,那么我们需要解一个m组e个平方数之和等于固定正整数N的二次丢番图方程。猜想可以找到足够大的解,使得任意K(3)子图的三边满足三角不等式,从而在填入平方数之后所得的n个顶点都是正数,因此都必是正有理数。将n个数同时乘以分母最小公倍数的平方(1或4),即可得n个两两之和为平方数的正整数。

例子7:在例子5里由于9²+24²<31²,解里有一个负数-152,我们想丢掉它。于是寻找一组更大的 61²+98² = 67²+94² = 77²+86²,得到解(407,3314,4082,5522),都是正整数。

定理8[1]当n≤5时,原命题成立。

证明:(7442,28658,148583,177458,763442)是一组解。

……丢番图方程不太好解,再丢一个引理吧

命题9:K(n)任意四个顶点abcd,ab+cd=ac+bd是推论2的充分条件。

证明:(1)当n是奇数时,将K(n)的顶点从1到n标号,考虑任意一条哈密顿回路,按照边的连接顺序生成一个n的错排。于是由已知条件,交换错排中任意相邻两个顶点顺序得到的哈密顿回路之和不变。由冒泡排序算法,任何哈密顿回路的和等于回路12……n的和,因此任两条哈密顿回路的和相等。(2)当n是偶数时,同样给K(n)标号,取任意一个完美配对,由已知条件可以交换至n和n-1配对而和不变,于是对n归纳可知由于K(n)去除n和n-1两个顶点之后得到的K(n-2)满足每个完美配对和恒定,最初的K(n)也满足每个完美配对和恒定。

例子10[2]当n=6时,(3694388882, 3694388882, 60445225682, 42248104082, 102804712082, 254645020559)和(339323777731946898, 1393697157060854002, 2146648434867118098, 8397374854916636127, 12982930841197954098, −303704776155745998)是两组几乎解。

命题11:方程 A²+B²=C²+D² 的所有整数解形如 (ax+by)²+(ay-bx)²=(ax-by)²+(ay+bx)²。

证明:经典结论,考虑 A²+B²=C²+D² 在Z[i]中的质因数分解即可。同样的方法也应用于K(4)方程 A²+B²=C²+D²=E²+F²,但解的每一项都有八项,太长忽略不考虑。

(2019圣诞节更新:不知道怎么转化出来了个deg1射影代数簇上的有理点问题,暂时没什么其他更好的想法,在有能力解决之前大概搁置一段时间了)

参考

  1. ^ https://math.stackexchange.com/questions/1576986/pairwise-sums-are-perfect-squares
  2. ^ https://www.primepuzzles.net/problems/prob_070.htm



  

相关话题

  为什么人人都说数学有用/很重要, 但似乎大多数人(非数学专业)并不会去证明他们用到的数学? 
  有没有符合f'(x)=f(x+1)的函数? 
  这个积分有人会不呀 我想不通? 
  是否存在一个比复数更大的数域,使得任意五次方程都有根式解? 
  学数学学到什么程度怎样才算学好了? 
  如何定义或描述数学的全貌? 
  为什么感觉群论学起来比数学分析之类难好多? 
  微积分之后,现代数学有哪些新的革命性工具?近年来物理理论没有突破,是不是微积分不够用了? 
  如何看待任正非说的「发展芯片光砸钱不行,还要砸物理学家数学家」? 
  怎么看待考研数学老师李林「神押题」? 

前一个讨论
如何解这个数列的通项公式?
下一个讨论
这题怎样证?





© 2024-11-08 - tinynew.org. All Rights Reserved.
© 2024-11-08 - tinynew.org. 保留所有权利