百科问答小站 logo
百科问答小站 font logo



n阶矩阵A的各行各列只有一个元素是1或−1,其余元素均为0.是否存在正整数k,使得A^k=I? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

我看了各位的回答,满足这些条件的矩阵构成一个有限群实在是非常精彩的想法。下面我用我最近写的作业的一个结论来解决这个题。这个结论非常强,它完整刻画了置换矩阵的特征行为。

这个结论是:假设置换 被分解成disjoint的cycle的乘积 ,其中 是 ,那么该置换对应的置换矩阵 的特征多项式是

对这个结论使用cayley-hamilton定理就可得 是 的零化多项式。设 ,则由 推出 推出 推出 是 的零化多项式,故 。

对于结论的证明,这里说个提纲。首先考虑特殊情况:假如 本身 ,那么直接用特征多项式的定义 去计算每一项的系数得到 。然后考虑一般情形:假如 ,先对 做行变换变成分块矩阵 使得每一块 恰好是 的置换矩阵。由特殊情况知每个 的特征多项式是 ,那么由分块矩阵行列式的性质就知道整个矩阵 的特征多项式就是分块的特征多项式乘起来 。之前做的行变换只改变行列式正负号,而特征多项式的首项系数是1,所以前面还是正号。

有些元素为-1没有本质的困难,其他答主也说了这一点,这里用特征多项式说明一下。其实看上面的证明过程就可以发现,如果有些元素为-1的话, 的特征多项式就是 。还是设 就有 且 。所以 ,故 是 的零化多项式,即




  

相关话题

  有哪些式子行列式答案等于520? 
  如何看待 2021 年 USNews 排名数学学科曲阜师范大学超越北大排名第一,山东科技大学排名第三? 
  如何用数学证明活着就有希望? 
  你见过哪些堪称绝妙的数学证明? 
  无理数是否真的存在? 
  中学阶段解出一道很难的数学题和在数学研究领域做出重大突破的区别在哪? 
  能不能让两个与 π 无关的两个数之和等于 π? 
  如何看待「搞积」这种现象? 
  高维情况有没有叉乘运算?怎么计算? 
  如何学习高等代数?高等代数注重定理证明吗?学习数分需要会各种证明,高代也这样吗?高代注重计算吗? 

前一个讨论
矩阵相乘的变换为什么总会伴随“颠倒”顺序?
下一个讨论
为什么要用文字定义多项式,而不是直接将多项式函数定义为多项式?





© 2025-04-25 - tinynew.org. All Rights Reserved.
© 2025-04-25 - tinynew.org. 保留所有权利