百科问答小站 logo
百科问答小站 font logo



n阶矩阵A的各行各列只有一个元素是1或−1,其余元素均为0.是否存在正整数k,使得A^k=I? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

我看了各位的回答,满足这些条件的矩阵构成一个有限群实在是非常精彩的想法。下面我用我最近写的作业的一个结论来解决这个题。这个结论非常强,它完整刻画了置换矩阵的特征行为。

这个结论是:假设置换 被分解成disjoint的cycle的乘积 ,其中 是 ,那么该置换对应的置换矩阵 的特征多项式是

对这个结论使用cayley-hamilton定理就可得 是 的零化多项式。设 ,则由 推出 推出 推出 是 的零化多项式,故 。

对于结论的证明,这里说个提纲。首先考虑特殊情况:假如 本身 ,那么直接用特征多项式的定义 去计算每一项的系数得到 。然后考虑一般情形:假如 ,先对 做行变换变成分块矩阵 使得每一块 恰好是 的置换矩阵。由特殊情况知每个 的特征多项式是 ,那么由分块矩阵行列式的性质就知道整个矩阵 的特征多项式就是分块的特征多项式乘起来 。之前做的行变换只改变行列式正负号,而特征多项式的首项系数是1,所以前面还是正号。

有些元素为-1没有本质的困难,其他答主也说了这一点,这里用特征多项式说明一下。其实看上面的证明过程就可以发现,如果有些元素为-1的话, 的特征多项式就是 。还是设 就有 且 。所以 ,故 是 的零化多项式,即




  

相关话题

  数学中数列有什么技巧? 
  如何看待南昌大学2020线性代数期末考试,出卷人明知疫情期间学习效率低,仍故意极大提高试卷难度? 
  如何看待哈佛大学数学教授姚鸿泽认为分析,几何和拓扑当初学不应当过于纠结细节,而应当快速进入核心内容? 
  怎么看待对数学理论、定理「有什么用」这类问题? 
  万有引力定律中,为什么由 F∝m、F∝M 可以推出 F∝Mm?如何用数学方法证明? 
  波是什么?什么是波? 
  有没有哪些数学猜想是验证到很大的数以后才发现是错的? 
  如果 a/b 是有理数,那么为什么圆周率不是有理数? 
  经济类问题可以用逻辑来解释吗? 
  洗澡的时候突然论证出了1等于0,2等于0,所有数等于0,这个论证哪里错了呢? 

前一个讨论
矩阵相乘的变换为什么总会伴随“颠倒”顺序?
下一个讨论
为什么要用文字定义多项式,而不是直接将多项式函数定义为多项式?





© 2024-11-27 - tinynew.org. All Rights Reserved.
© 2024-11-27 - tinynew.org. 保留所有权利