百科问答小站 logo
百科问答小站 font logo



任意给一闭合光滑平面曲线,该曲线每个点都受一个法向的相等的力。那么该曲线所受的合外力是否为零? 第1页

  

user avatar   zhai-sen-8 网友的相关建议: 
      

首先对于原问题,这个问题是说对于每个点受到一个若干大小的力。这样绕着曲线一圈求和,相当于对不可数个向量求和,如果考察分量的话,相当于要对不可数个实数相加,而这并没有良好的定义。因此对于这个问题无法回答,除非给出不可数个实数相加的定义。

但是可以对于这个问题略加修改。在物理中有“压强”的概念。我们可以假定,对于单位长度的曲线段,总受单位法向量的力。比如,考察一条线段,单位长度总受法向量 的力,那么长度为 的线段,所受合力就是积分 。对于曲线,在局部而言(即曲线段很小的时候)可以近似看成是直的,这一小段受的合力就是相对于这一小段长度的那么长的法向量。把各个小曲线段的合力加起来就是整个曲线受的总的合力。因此也可以用如上的积分去计算。

在这个意义下,题主的命题是对的(当然,题主还有一点没有说明。必须还要假定这些法向的力都指向曲线的同侧)。下面是证明。

设闭曲线 : 。让曲线按长度参数化,即 。设在 处的单位法向量是 (都指向内侧或外侧),则由切向量是 可得单位法向量是 。因此 是光滑函数,即确实指向的是曲线的同侧(否则不会光滑),并且有




  

相关话题

  f(x)=sin(x), x∈[0, π/2] 是不是某个椭圆的一部分? 
  沃罗诺伊图(Voronoi Diagram,也称作Dirichlet tessellation,狄利克雷镶嵌 )是怎样的? 
  这道几何题怎么证明? 
  如何看待卡西·曼夫妇发现的可无缝密铺平面的五边形? 
  一堆n维空间的由m个点组成的点集,m大于n,我们只知道它们之间的距离,能否判断所在空间的维数? 
  在边长为 1 的正方形中随机取三个点,构成三角形的面积期望是多少? 
  圆锥体的体积公式是怎么推导出来的? 
  割圆术就算割了∞次,它和真实面积也相差很小一部分,怎么就说它就可以等于真实面积? 
  怎样从生化危机里的激光网格逃生? 
  数学或者自然科学中有哪些理论技巧一经提出就大大化简了过去某些问题很困难繁琐的解答? 

前一个讨论
什么时候积分运算和级数求和可以调换顺序?
下一个讨论
已知一个函数在实数域内连续,并且为周期函数,如何证明它在实数域内一致连续?





© 2025-04-25 - tinynew.org. All Rights Reserved.
© 2025-04-25 - tinynew.org. 保留所有权利