利用对变上限积分求导的公式。
对于一个半径为 的球体,我们可以这样得到体积的分解:从球心出发,构造一个个同心球面,它们对应的半径是 ,每个球面的表面积 乘以一定厚度 就是空心球壳的体积,将所有这样的球壳累加起来就得到球的体积 ,也即是
于是我们对上式两边同时求导:
证明全程没有提及维数的事情,事实上对于高维也是成立的.
此证明成立是基于一点几何直观(前文加粗黑体的句子)。这个几何直观是正确的,对于一般的 流形而言,根据 引理的推论,测地球( )的表面,与径向的测地线正交。参见 的书。