百科问答小站 logo
百科问答小站 font logo



连续的周期函数都有最小正周期吗? 第1页

  

user avatar   yu-yiren-62 网友的相关建议: 
      

可以证明

定义在 上的非常值的连续周期函数必有最小正周期。

考虑利用反证法。

设 是连续周期函数,考察其所有正周期组成的集合 由于 非空且有下界,于是依确界原理, 必有下确界,记这下确界为 由于 中无最小元素,所以 必是无穷集,于是必可于其中分选出单调递减收敛于 的子列

再置 显然所有 也都是 的周期,且 于是对任意的 必可求得某个 使得

请注意:定义在 上的连续周期函数必定一致连续,于是对任意的 只要 就有 又总能求得整数 使得 于是 再依 的任意性,这只能是 与函数非常值矛盾。




  

相关话题

  有哪些值得推荐的数学分析教材或者参考书? 
  一个骰子,等概率的能掷出1-5。那么现在有两颗骰子。怎么样才能利用这两颗骰子等概率的得到1-25? 
  如何看待「搞积」这种现象? 
  如何证明以下等式? 
  所有正方形的数量与所有长方形的数量相等吗? 
  数学中,类似 π、e 的独立的常数还有哪些? 
  有没有这样的函数,其一阶导等于1,二阶导等于2,三阶导等于3,n阶导等于n,n一直趋于无穷大? 
  如何证明此不等式呢? 
  如何才能让学的数学灵活起来,或者说融会贯通? 
  一个关于新的磁场解释的初级模型 3.1(简化为了等待讨论新内容),可以完善吗? 

前一个讨论
抽象函数2f(x)f(y)=f(x+y)+f(x-y)的通式是什么??
下一个讨论
这个题目怎么解?我一直没有思路。?





© 2024-11-21 - tinynew.org. All Rights Reserved.
© 2024-11-21 - tinynew.org. 保留所有权利