百科问答小站 logo
百科问答小站 font logo



为什么有理数是不完备的? 第1页

  

user avatar   qi-xuan-80-61 网友的相关建议: 
      

按题,先举例.

1 有理数作为无理数列的极限

设我们讨论的有理数为 ,不妨设 。令 ,考察数列 。令

其中 表示不超过 的最大整数, 。首先,我们证明 是无理数。显然, 是无理数当且仅当 为无理数。考虑反证法。因为 ,故可设 两边平方并整理得

这说明

从 到 的过程可以无限重复,且每次分母都变成了更小的正整数。这与正整数集有下界矛盾。

故 ,从而 。而

前一个不等号是显然的,后一个不等号是由 的Maclaurin展开式放缩得到的。故易见 收敛于 。

2 无理数作为有理数列的极限

设我们讨论的无理数为 。考察数列

按定义易得

由迫敛准则知

如果从序列的角度来考察 的完备性(这里的 是指按实数的一般定义构造出的所有同构的有序域的全体),那么完备性可以表述成 中有界序列均有收敛子列,有理数则不具备这样的性质。事实上,Dedekind等数学家正是在有理数的基础上,通过“弥补”有理数的此类缺陷构造出的实数。




  

相关话题

  有理函数的不定积分分母的标准分解的窍门,一些分母较为复杂,如何进行分解? 
  定义域为空集的空函数该怎么理解? 
  请问这个三重积分该如何做? 
  阿贝尔定理有什么哲学思想? 
  如何确定下面三角恒等式中的系数? 
  如何证明数列sinn^2发散? 
  这道题如何用柯西审敛准则证明收敛? 
  一道数学分析题? 应该如何做呢? 
  设点集B满足,对任给ε>0,都存在可测集A,使得m*(AΔB)<ε,证明B是可测集,还有什么解法? 
  {mr+n! | m∈Z,n∈N}是否在R上稠密? 

前一个讨论
如何通俗解释伯努利原理?
下一个讨论
不定积分中dx和定积分的含义是什么?





© 2025-06-25 - tinynew.org. All Rights Reserved.
© 2025-06-25 - tinynew.org. 保留所有权利