百科问答小站 logo
百科问答小站 font logo



为什么有理数是不完备的? 第1页

  

user avatar   qi-xuan-80-61 网友的相关建议: 
      

按题,先举例.

1 有理数作为无理数列的极限

设我们讨论的有理数为 ,不妨设 。令 ,考察数列 。令

其中 表示不超过 的最大整数, 。首先,我们证明 是无理数。显然, 是无理数当且仅当 为无理数。考虑反证法。因为 ,故可设 两边平方并整理得

这说明

从 到 的过程可以无限重复,且每次分母都变成了更小的正整数。这与正整数集有下界矛盾。

故 ,从而 。而

前一个不等号是显然的,后一个不等号是由 的Maclaurin展开式放缩得到的。故易见 收敛于 。

2 无理数作为有理数列的极限

设我们讨论的无理数为 。考察数列

按定义易得

由迫敛准则知

如果从序列的角度来考察 的完备性(这里的 是指按实数的一般定义构造出的所有同构的有序域的全体),那么完备性可以表述成 中有界序列均有收敛子列,有理数则不具备这样的性质。事实上,Dedekind等数学家正是在有理数的基础上,通过“弥补”有理数的此类缺陷构造出的实数。




  

相关话题

  lnx 的 0.5 阶导数是什么? 
  怎样证明 0.999… = 1? 
  常微分方程解对初值的连续依赖性,书上都是定理证明,能否举个最简的方程来说明下,它的解是怎么依赖初值的? 
  请问这个奇怪的极限怎么求? 
  不知道想下面描述的一样理解数列极限和收敛对不对,有什么需要改进的地方吗? 
  如何证明这个数列$$a_{n}=sum_{i=1}^{n}(-1)^{⌊ix⌋}$$无界? 
  微积分学教程是否适合工科学生提高数学水平? 
  数学有什么意义?数学中的一切都是人类自己编造的吗? 
  为什么函数的解被称为「根」? 
  如何评价中科大2019-2020学年数学分析A1期末考试? 

前一个讨论
如何通俗解释伯努利原理?
下一个讨论
不定积分中dx和定积分的含义是什么?





© 2025-04-03 - tinynew.org. All Rights Reserved.
© 2025-04-03 - tinynew.org. 保留所有权利